Global modeling and simulation of a three-phase fluidized bed bioreactor

Autores
Fuentes, Mauren; Mussati, Miguel Ceferino; Scenna, Nicolas Jose; Aguirre, Pio Antonio
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The main purpose of this paper was to present a heterogeneous model of a three-phase solid-liquid-gas system to investigate the hydrodynamics and biological behavior and the system performance of anaerobic fluidized bed reactors (AFBRs). The Anaerobic Digestion Model No. 1 (ADM1) was selected to describe the substrate degradation scheme and was applied to a biofilm system. Global modeling of AFBRs involves differential mass and momentum balance equations for the three phases, differential mass balance equations for phase components, and algebraic equations to compute the biochemical and physico-chemical processes that take place in the bioreactor. A one-dimensional (axial) dynamic model was proposed, and different phase flow patterns were analyzed. Simulation results of a case study based on a feed with a low substrate concentration (1 g of chemical oxygen demand, COD, per liter) are shown. As first approach, biochemical transformations are assumed to occur only in the fluidized bed zone but not in the free-support material zone. A sensitivity analysis of simulation results related to model parameters with high uncertainty such as specific biofilm detachment rate, liquid-gas mass transfer coefficient, and particle density and diameter was performed. A second approach based on model extension to the two-phase non-fluidized zone allowed evaluating the effect of substrate consumption by suspended biomass in the free-bioparticles zone. A decrease in the biofilm concentration up to 3.6% and thus, a decrease in the COD removal efficiency was predicted. However, some factors involving the biofilm detachment rate, reactor design characteristics and substrate residence time need to be analyzed for each specific case. The implementation of this modeling approach resulted in more programming effort and CPU time than the first one. A key feature of the model is the simultaneous prediction of phases and components dynamics, including the effect of biofilm growth in the fluidization characteristics and interaction among them in both hydrodynamic and biological transients.
Fil: Fuentes, Mauren. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Mussati, Miguel Ceferino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Scenna, Nicolas Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Aguirre, Pio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Materia
Dynamic Modeling And Simulation
Fluidized Bed Bioreactors
Three-Phase Systems
Wastewater Treatment
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/83808

id CONICETDig_81cba1beb892b0b687fc006b36568df1
oai_identifier_str oai:ri.conicet.gov.ar:11336/83808
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Global modeling and simulation of a three-phase fluidized bed bioreactorFuentes, MaurenMussati, Miguel CeferinoScenna, Nicolas JoseAguirre, Pio AntonioDynamic Modeling And SimulationFluidized Bed BioreactorsThree-Phase SystemsWastewater Treatmenthttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2The main purpose of this paper was to present a heterogeneous model of a three-phase solid-liquid-gas system to investigate the hydrodynamics and biological behavior and the system performance of anaerobic fluidized bed reactors (AFBRs). The Anaerobic Digestion Model No. 1 (ADM1) was selected to describe the substrate degradation scheme and was applied to a biofilm system. Global modeling of AFBRs involves differential mass and momentum balance equations for the three phases, differential mass balance equations for phase components, and algebraic equations to compute the biochemical and physico-chemical processes that take place in the bioreactor. A one-dimensional (axial) dynamic model was proposed, and different phase flow patterns were analyzed. Simulation results of a case study based on a feed with a low substrate concentration (1 g of chemical oxygen demand, COD, per liter) are shown. As first approach, biochemical transformations are assumed to occur only in the fluidized bed zone but not in the free-support material zone. A sensitivity analysis of simulation results related to model parameters with high uncertainty such as specific biofilm detachment rate, liquid-gas mass transfer coefficient, and particle density and diameter was performed. A second approach based on model extension to the two-phase non-fluidized zone allowed evaluating the effect of substrate consumption by suspended biomass in the free-bioparticles zone. A decrease in the biofilm concentration up to 3.6% and thus, a decrease in the COD removal efficiency was predicted. However, some factors involving the biofilm detachment rate, reactor design characteristics and substrate residence time need to be analyzed for each specific case. The implementation of this modeling approach resulted in more programming effort and CPU time than the first one. A key feature of the model is the simultaneous prediction of phases and components dynamics, including the effect of biofilm growth in the fluidization characteristics and interaction among them in both hydrodynamic and biological transients.Fil: Fuentes, Mauren. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Mussati, Miguel Ceferino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Scenna, Nicolas Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Aguirre, Pio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaPergamon-Elsevier Science Ltd2009-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/83808Fuentes, Mauren; Mussati, Miguel Ceferino; Scenna, Nicolas Jose; Aguirre, Pio Antonio; Global modeling and simulation of a three-phase fluidized bed bioreactor; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 33; 1; 1-2009; 359-3700098-1354CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S009813540800210Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2008.10.001info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:32:48Zoai:ri.conicet.gov.ar:11336/83808instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:32:48.406CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Global modeling and simulation of a three-phase fluidized bed bioreactor
title Global modeling and simulation of a three-phase fluidized bed bioreactor
spellingShingle Global modeling and simulation of a three-phase fluidized bed bioreactor
Fuentes, Mauren
Dynamic Modeling And Simulation
Fluidized Bed Bioreactors
Three-Phase Systems
Wastewater Treatment
title_short Global modeling and simulation of a three-phase fluidized bed bioreactor
title_full Global modeling and simulation of a three-phase fluidized bed bioreactor
title_fullStr Global modeling and simulation of a three-phase fluidized bed bioreactor
title_full_unstemmed Global modeling and simulation of a three-phase fluidized bed bioreactor
title_sort Global modeling and simulation of a three-phase fluidized bed bioreactor
dc.creator.none.fl_str_mv Fuentes, Mauren
Mussati, Miguel Ceferino
Scenna, Nicolas Jose
Aguirre, Pio Antonio
author Fuentes, Mauren
author_facet Fuentes, Mauren
Mussati, Miguel Ceferino
Scenna, Nicolas Jose
Aguirre, Pio Antonio
author_role author
author2 Mussati, Miguel Ceferino
Scenna, Nicolas Jose
Aguirre, Pio Antonio
author2_role author
author
author
dc.subject.none.fl_str_mv Dynamic Modeling And Simulation
Fluidized Bed Bioreactors
Three-Phase Systems
Wastewater Treatment
topic Dynamic Modeling And Simulation
Fluidized Bed Bioreactors
Three-Phase Systems
Wastewater Treatment
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The main purpose of this paper was to present a heterogeneous model of a three-phase solid-liquid-gas system to investigate the hydrodynamics and biological behavior and the system performance of anaerobic fluidized bed reactors (AFBRs). The Anaerobic Digestion Model No. 1 (ADM1) was selected to describe the substrate degradation scheme and was applied to a biofilm system. Global modeling of AFBRs involves differential mass and momentum balance equations for the three phases, differential mass balance equations for phase components, and algebraic equations to compute the biochemical and physico-chemical processes that take place in the bioreactor. A one-dimensional (axial) dynamic model was proposed, and different phase flow patterns were analyzed. Simulation results of a case study based on a feed with a low substrate concentration (1 g of chemical oxygen demand, COD, per liter) are shown. As first approach, biochemical transformations are assumed to occur only in the fluidized bed zone but not in the free-support material zone. A sensitivity analysis of simulation results related to model parameters with high uncertainty such as specific biofilm detachment rate, liquid-gas mass transfer coefficient, and particle density and diameter was performed. A second approach based on model extension to the two-phase non-fluidized zone allowed evaluating the effect of substrate consumption by suspended biomass in the free-bioparticles zone. A decrease in the biofilm concentration up to 3.6% and thus, a decrease in the COD removal efficiency was predicted. However, some factors involving the biofilm detachment rate, reactor design characteristics and substrate residence time need to be analyzed for each specific case. The implementation of this modeling approach resulted in more programming effort and CPU time than the first one. A key feature of the model is the simultaneous prediction of phases and components dynamics, including the effect of biofilm growth in the fluidization characteristics and interaction among them in both hydrodynamic and biological transients.
Fil: Fuentes, Mauren. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Mussati, Miguel Ceferino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Scenna, Nicolas Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Aguirre, Pio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
description The main purpose of this paper was to present a heterogeneous model of a three-phase solid-liquid-gas system to investigate the hydrodynamics and biological behavior and the system performance of anaerobic fluidized bed reactors (AFBRs). The Anaerobic Digestion Model No. 1 (ADM1) was selected to describe the substrate degradation scheme and was applied to a biofilm system. Global modeling of AFBRs involves differential mass and momentum balance equations for the three phases, differential mass balance equations for phase components, and algebraic equations to compute the biochemical and physico-chemical processes that take place in the bioreactor. A one-dimensional (axial) dynamic model was proposed, and different phase flow patterns were analyzed. Simulation results of a case study based on a feed with a low substrate concentration (1 g of chemical oxygen demand, COD, per liter) are shown. As first approach, biochemical transformations are assumed to occur only in the fluidized bed zone but not in the free-support material zone. A sensitivity analysis of simulation results related to model parameters with high uncertainty such as specific biofilm detachment rate, liquid-gas mass transfer coefficient, and particle density and diameter was performed. A second approach based on model extension to the two-phase non-fluidized zone allowed evaluating the effect of substrate consumption by suspended biomass in the free-bioparticles zone. A decrease in the biofilm concentration up to 3.6% and thus, a decrease in the COD removal efficiency was predicted. However, some factors involving the biofilm detachment rate, reactor design characteristics and substrate residence time need to be analyzed for each specific case. The implementation of this modeling approach resulted in more programming effort and CPU time than the first one. A key feature of the model is the simultaneous prediction of phases and components dynamics, including the effect of biofilm growth in the fluidization characteristics and interaction among them in both hydrodynamic and biological transients.
publishDate 2009
dc.date.none.fl_str_mv 2009-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/83808
Fuentes, Mauren; Mussati, Miguel Ceferino; Scenna, Nicolas Jose; Aguirre, Pio Antonio; Global modeling and simulation of a three-phase fluidized bed bioreactor; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 33; 1; 1-2009; 359-370
0098-1354
CONICET Digital
CONICET
url http://hdl.handle.net/11336/83808
identifier_str_mv Fuentes, Mauren; Mussati, Miguel Ceferino; Scenna, Nicolas Jose; Aguirre, Pio Antonio; Global modeling and simulation of a three-phase fluidized bed bioreactor; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 33; 1; 1-2009; 359-370
0098-1354
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S009813540800210X
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2008.10.001
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614342099599360
score 13.070432