Global modeling and simulation of a three-phase fluidized bed bioreactor
- Autores
- Fuentes, Mauren; Mussati, Miguel Ceferino; Scenna, Nicolas Jose; Aguirre, Pio Antonio
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The main purpose of this paper was to present a heterogeneous model of a three-phase solid-liquid-gas system to investigate the hydrodynamics and biological behavior and the system performance of anaerobic fluidized bed reactors (AFBRs). The Anaerobic Digestion Model No. 1 (ADM1) was selected to describe the substrate degradation scheme and was applied to a biofilm system. Global modeling of AFBRs involves differential mass and momentum balance equations for the three phases, differential mass balance equations for phase components, and algebraic equations to compute the biochemical and physico-chemical processes that take place in the bioreactor. A one-dimensional (axial) dynamic model was proposed, and different phase flow patterns were analyzed. Simulation results of a case study based on a feed with a low substrate concentration (1 g of chemical oxygen demand, COD, per liter) are shown. As first approach, biochemical transformations are assumed to occur only in the fluidized bed zone but not in the free-support material zone. A sensitivity analysis of simulation results related to model parameters with high uncertainty such as specific biofilm detachment rate, liquid-gas mass transfer coefficient, and particle density and diameter was performed. A second approach based on model extension to the two-phase non-fluidized zone allowed evaluating the effect of substrate consumption by suspended biomass in the free-bioparticles zone. A decrease in the biofilm concentration up to 3.6% and thus, a decrease in the COD removal efficiency was predicted. However, some factors involving the biofilm detachment rate, reactor design characteristics and substrate residence time need to be analyzed for each specific case. The implementation of this modeling approach resulted in more programming effort and CPU time than the first one. A key feature of the model is the simultaneous prediction of phases and components dynamics, including the effect of biofilm growth in the fluidization characteristics and interaction among them in both hydrodynamic and biological transients.
Fil: Fuentes, Mauren. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Mussati, Miguel Ceferino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Scenna, Nicolas Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Aguirre, Pio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina - Materia
-
Dynamic Modeling And Simulation
Fluidized Bed Bioreactors
Three-Phase Systems
Wastewater Treatment - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/83808
Ver los metadatos del registro completo
id |
CONICETDig_81cba1beb892b0b687fc006b36568df1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/83808 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Global modeling and simulation of a three-phase fluidized bed bioreactorFuentes, MaurenMussati, Miguel CeferinoScenna, Nicolas JoseAguirre, Pio AntonioDynamic Modeling And SimulationFluidized Bed BioreactorsThree-Phase SystemsWastewater Treatmenthttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2The main purpose of this paper was to present a heterogeneous model of a three-phase solid-liquid-gas system to investigate the hydrodynamics and biological behavior and the system performance of anaerobic fluidized bed reactors (AFBRs). The Anaerobic Digestion Model No. 1 (ADM1) was selected to describe the substrate degradation scheme and was applied to a biofilm system. Global modeling of AFBRs involves differential mass and momentum balance equations for the three phases, differential mass balance equations for phase components, and algebraic equations to compute the biochemical and physico-chemical processes that take place in the bioreactor. A one-dimensional (axial) dynamic model was proposed, and different phase flow patterns were analyzed. Simulation results of a case study based on a feed with a low substrate concentration (1 g of chemical oxygen demand, COD, per liter) are shown. As first approach, biochemical transformations are assumed to occur only in the fluidized bed zone but not in the free-support material zone. A sensitivity analysis of simulation results related to model parameters with high uncertainty such as specific biofilm detachment rate, liquid-gas mass transfer coefficient, and particle density and diameter was performed. A second approach based on model extension to the two-phase non-fluidized zone allowed evaluating the effect of substrate consumption by suspended biomass in the free-bioparticles zone. A decrease in the biofilm concentration up to 3.6% and thus, a decrease in the COD removal efficiency was predicted. However, some factors involving the biofilm detachment rate, reactor design characteristics and substrate residence time need to be analyzed for each specific case. The implementation of this modeling approach resulted in more programming effort and CPU time than the first one. A key feature of the model is the simultaneous prediction of phases and components dynamics, including the effect of biofilm growth in the fluidization characteristics and interaction among them in both hydrodynamic and biological transients.Fil: Fuentes, Mauren. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Mussati, Miguel Ceferino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Scenna, Nicolas Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Aguirre, Pio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaPergamon-Elsevier Science Ltd2009-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/83808Fuentes, Mauren; Mussati, Miguel Ceferino; Scenna, Nicolas Jose; Aguirre, Pio Antonio; Global modeling and simulation of a three-phase fluidized bed bioreactor; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 33; 1; 1-2009; 359-3700098-1354CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S009813540800210Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2008.10.001info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:32:48Zoai:ri.conicet.gov.ar:11336/83808instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:32:48.406CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Global modeling and simulation of a three-phase fluidized bed bioreactor |
title |
Global modeling and simulation of a three-phase fluidized bed bioreactor |
spellingShingle |
Global modeling and simulation of a three-phase fluidized bed bioreactor Fuentes, Mauren Dynamic Modeling And Simulation Fluidized Bed Bioreactors Three-Phase Systems Wastewater Treatment |
title_short |
Global modeling and simulation of a three-phase fluidized bed bioreactor |
title_full |
Global modeling and simulation of a three-phase fluidized bed bioreactor |
title_fullStr |
Global modeling and simulation of a three-phase fluidized bed bioreactor |
title_full_unstemmed |
Global modeling and simulation of a three-phase fluidized bed bioreactor |
title_sort |
Global modeling and simulation of a three-phase fluidized bed bioreactor |
dc.creator.none.fl_str_mv |
Fuentes, Mauren Mussati, Miguel Ceferino Scenna, Nicolas Jose Aguirre, Pio Antonio |
author |
Fuentes, Mauren |
author_facet |
Fuentes, Mauren Mussati, Miguel Ceferino Scenna, Nicolas Jose Aguirre, Pio Antonio |
author_role |
author |
author2 |
Mussati, Miguel Ceferino Scenna, Nicolas Jose Aguirre, Pio Antonio |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Dynamic Modeling And Simulation Fluidized Bed Bioreactors Three-Phase Systems Wastewater Treatment |
topic |
Dynamic Modeling And Simulation Fluidized Bed Bioreactors Three-Phase Systems Wastewater Treatment |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The main purpose of this paper was to present a heterogeneous model of a three-phase solid-liquid-gas system to investigate the hydrodynamics and biological behavior and the system performance of anaerobic fluidized bed reactors (AFBRs). The Anaerobic Digestion Model No. 1 (ADM1) was selected to describe the substrate degradation scheme and was applied to a biofilm system. Global modeling of AFBRs involves differential mass and momentum balance equations for the three phases, differential mass balance equations for phase components, and algebraic equations to compute the biochemical and physico-chemical processes that take place in the bioreactor. A one-dimensional (axial) dynamic model was proposed, and different phase flow patterns were analyzed. Simulation results of a case study based on a feed with a low substrate concentration (1 g of chemical oxygen demand, COD, per liter) are shown. As first approach, biochemical transformations are assumed to occur only in the fluidized bed zone but not in the free-support material zone. A sensitivity analysis of simulation results related to model parameters with high uncertainty such as specific biofilm detachment rate, liquid-gas mass transfer coefficient, and particle density and diameter was performed. A second approach based on model extension to the two-phase non-fluidized zone allowed evaluating the effect of substrate consumption by suspended biomass in the free-bioparticles zone. A decrease in the biofilm concentration up to 3.6% and thus, a decrease in the COD removal efficiency was predicted. However, some factors involving the biofilm detachment rate, reactor design characteristics and substrate residence time need to be analyzed for each specific case. The implementation of this modeling approach resulted in more programming effort and CPU time than the first one. A key feature of the model is the simultaneous prediction of phases and components dynamics, including the effect of biofilm growth in the fluidization characteristics and interaction among them in both hydrodynamic and biological transients. Fil: Fuentes, Mauren. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Mussati, Miguel Ceferino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Scenna, Nicolas Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Aguirre, Pio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina |
description |
The main purpose of this paper was to present a heterogeneous model of a three-phase solid-liquid-gas system to investigate the hydrodynamics and biological behavior and the system performance of anaerobic fluidized bed reactors (AFBRs). The Anaerobic Digestion Model No. 1 (ADM1) was selected to describe the substrate degradation scheme and was applied to a biofilm system. Global modeling of AFBRs involves differential mass and momentum balance equations for the three phases, differential mass balance equations for phase components, and algebraic equations to compute the biochemical and physico-chemical processes that take place in the bioreactor. A one-dimensional (axial) dynamic model was proposed, and different phase flow patterns were analyzed. Simulation results of a case study based on a feed with a low substrate concentration (1 g of chemical oxygen demand, COD, per liter) are shown. As first approach, biochemical transformations are assumed to occur only in the fluidized bed zone but not in the free-support material zone. A sensitivity analysis of simulation results related to model parameters with high uncertainty such as specific biofilm detachment rate, liquid-gas mass transfer coefficient, and particle density and diameter was performed. A second approach based on model extension to the two-phase non-fluidized zone allowed evaluating the effect of substrate consumption by suspended biomass in the free-bioparticles zone. A decrease in the biofilm concentration up to 3.6% and thus, a decrease in the COD removal efficiency was predicted. However, some factors involving the biofilm detachment rate, reactor design characteristics and substrate residence time need to be analyzed for each specific case. The implementation of this modeling approach resulted in more programming effort and CPU time than the first one. A key feature of the model is the simultaneous prediction of phases and components dynamics, including the effect of biofilm growth in the fluidization characteristics and interaction among them in both hydrodynamic and biological transients. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/83808 Fuentes, Mauren; Mussati, Miguel Ceferino; Scenna, Nicolas Jose; Aguirre, Pio Antonio; Global modeling and simulation of a three-phase fluidized bed bioreactor; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 33; 1; 1-2009; 359-370 0098-1354 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/83808 |
identifier_str_mv |
Fuentes, Mauren; Mussati, Miguel Ceferino; Scenna, Nicolas Jose; Aguirre, Pio Antonio; Global modeling and simulation of a three-phase fluidized bed bioreactor; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 33; 1; 1-2009; 359-370 0098-1354 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S009813540800210X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2008.10.001 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614342099599360 |
score |
13.070432 |