Hydrodynamic aspects in anaerobic fluidized bed reactor modeling
- Autores
- Fuentes Mora, Mauren; Scenna, Nicolas Jose; Aguirre, Pio Antonio; Mussati, Miguel Ceferino
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The main purpose of this paper is to analyze the adequacy of some hypotheses assumed in the literature for modeling mass transfer phenomena and hydrodynamics in bioreactors. Four different hydrodynamic models were investigated to simulate the dynamic behavior of an anaerobic fluidized bed reactor (AFBR). A total developed flow condition and the assumption of an incipient gas phase are some of the evaluated hypotheses. All AFBR models simultaneously compute the dynamics of the phases and their components, including the effect of the biofilm growth in the fluidization characteristics. From a computational point of view, ordinary and partial differential equation-based models were calculated using gPROMS (Process System Enterprise Ltd.). Simulations based on a case study were compared. The bioreactor performance was analyzed through the main variable profiles such as phase holdups and bed height, pH, chemical oxygen demand (COD), biofilm concentration and biogas flow rate. In a previous paper [M. Fuentes, M.C. Mussati, N.J. Scenna, P.A. Aguirre, Global modeling and simulation of a three-phase fluidized bed bioreactor, Comput. Chem. Eng., Ms. Ref. No.: 4281, submitted for publication], a heterogeneous model of a three-phase bioreactor system was presented by proposing a one-dimensional (axial) dispersive model. Its results are here used to establish a reference point. For example, the fact of considering a three-phase system with total developed flow (hydrodynamic pseudo-steady state) and complete mixture in all phases causes deviations around 5% in predictions of biofilm concentration, and 0.5% in predictions of liquid and gas phase component concentrations, when compared with results from the phenomenological dispersive model. However, predicted total COD removal efficiency is almost the same for both models. Although the gas holdup is negligible when compared with the liquid and solid ones in anaerobic fluidized bed reactors, results from model simplification assuming an incipient gas phase differ considerably from predictions based on original three-phase modeling.
Fil: Fuentes Mora, Mauren. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Scenna, Nicolas Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Aguirre, Pio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Mussati, Miguel Ceferino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina - Materia
-
Hydrodinamycs
Bioreactors - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/83833
Ver los metadatos del registro completo
id |
CONICETDig_5a85a8ca5b914b79086878c86353b0ec |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/83833 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Hydrodynamic aspects in anaerobic fluidized bed reactor modelingFuentes Mora, MaurenScenna, Nicolas JoseAguirre, Pio AntonioMussati, Miguel CeferinoHydrodinamycsBioreactorshttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2The main purpose of this paper is to analyze the adequacy of some hypotheses assumed in the literature for modeling mass transfer phenomena and hydrodynamics in bioreactors. Four different hydrodynamic models were investigated to simulate the dynamic behavior of an anaerobic fluidized bed reactor (AFBR). A total developed flow condition and the assumption of an incipient gas phase are some of the evaluated hypotheses. All AFBR models simultaneously compute the dynamics of the phases and their components, including the effect of the biofilm growth in the fluidization characteristics. From a computational point of view, ordinary and partial differential equation-based models were calculated using gPROMS (Process System Enterprise Ltd.). Simulations based on a case study were compared. The bioreactor performance was analyzed through the main variable profiles such as phase holdups and bed height, pH, chemical oxygen demand (COD), biofilm concentration and biogas flow rate. In a previous paper [M. Fuentes, M.C. Mussati, N.J. Scenna, P.A. Aguirre, Global modeling and simulation of a three-phase fluidized bed bioreactor, Comput. Chem. Eng., Ms. Ref. No.: 4281, submitted for publication], a heterogeneous model of a three-phase bioreactor system was presented by proposing a one-dimensional (axial) dispersive model. Its results are here used to establish a reference point. For example, the fact of considering a three-phase system with total developed flow (hydrodynamic pseudo-steady state) and complete mixture in all phases causes deviations around 5% in predictions of biofilm concentration, and 0.5% in predictions of liquid and gas phase component concentrations, when compared with results from the phenomenological dispersive model. However, predicted total COD removal efficiency is almost the same for both models. Although the gas holdup is negligible when compared with the liquid and solid ones in anaerobic fluidized bed reactors, results from model simplification assuming an incipient gas phase differ considerably from predictions based on original three-phase modeling.Fil: Fuentes Mora, Mauren. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Scenna, Nicolas Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Aguirre, Pio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Mussati, Miguel Ceferino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaElsevier Science Sa2008-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/83833Fuentes Mora, Mauren; Scenna, Nicolas Jose; Aguirre, Pio Antonio; Mussati, Miguel Ceferino; Hydrodynamic aspects in anaerobic fluidized bed reactor modeling; Elsevier Science Sa; Chemical Engineering and Processing; 47; 9-10; 12-2008; 1530-15400255-2701CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.cep.2007.07.001info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:11:31Zoai:ri.conicet.gov.ar:11336/83833instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:11:31.716CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Hydrodynamic aspects in anaerobic fluidized bed reactor modeling |
title |
Hydrodynamic aspects in anaerobic fluidized bed reactor modeling |
spellingShingle |
Hydrodynamic aspects in anaerobic fluidized bed reactor modeling Fuentes Mora, Mauren Hydrodinamycs Bioreactors |
title_short |
Hydrodynamic aspects in anaerobic fluidized bed reactor modeling |
title_full |
Hydrodynamic aspects in anaerobic fluidized bed reactor modeling |
title_fullStr |
Hydrodynamic aspects in anaerobic fluidized bed reactor modeling |
title_full_unstemmed |
Hydrodynamic aspects in anaerobic fluidized bed reactor modeling |
title_sort |
Hydrodynamic aspects in anaerobic fluidized bed reactor modeling |
dc.creator.none.fl_str_mv |
Fuentes Mora, Mauren Scenna, Nicolas Jose Aguirre, Pio Antonio Mussati, Miguel Ceferino |
author |
Fuentes Mora, Mauren |
author_facet |
Fuentes Mora, Mauren Scenna, Nicolas Jose Aguirre, Pio Antonio Mussati, Miguel Ceferino |
author_role |
author |
author2 |
Scenna, Nicolas Jose Aguirre, Pio Antonio Mussati, Miguel Ceferino |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Hydrodinamycs Bioreactors |
topic |
Hydrodinamycs Bioreactors |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The main purpose of this paper is to analyze the adequacy of some hypotheses assumed in the literature for modeling mass transfer phenomena and hydrodynamics in bioreactors. Four different hydrodynamic models were investigated to simulate the dynamic behavior of an anaerobic fluidized bed reactor (AFBR). A total developed flow condition and the assumption of an incipient gas phase are some of the evaluated hypotheses. All AFBR models simultaneously compute the dynamics of the phases and their components, including the effect of the biofilm growth in the fluidization characteristics. From a computational point of view, ordinary and partial differential equation-based models were calculated using gPROMS (Process System Enterprise Ltd.). Simulations based on a case study were compared. The bioreactor performance was analyzed through the main variable profiles such as phase holdups and bed height, pH, chemical oxygen demand (COD), biofilm concentration and biogas flow rate. In a previous paper [M. Fuentes, M.C. Mussati, N.J. Scenna, P.A. Aguirre, Global modeling and simulation of a three-phase fluidized bed bioreactor, Comput. Chem. Eng., Ms. Ref. No.: 4281, submitted for publication], a heterogeneous model of a three-phase bioreactor system was presented by proposing a one-dimensional (axial) dispersive model. Its results are here used to establish a reference point. For example, the fact of considering a three-phase system with total developed flow (hydrodynamic pseudo-steady state) and complete mixture in all phases causes deviations around 5% in predictions of biofilm concentration, and 0.5% in predictions of liquid and gas phase component concentrations, when compared with results from the phenomenological dispersive model. However, predicted total COD removal efficiency is almost the same for both models. Although the gas holdup is negligible when compared with the liquid and solid ones in anaerobic fluidized bed reactors, results from model simplification assuming an incipient gas phase differ considerably from predictions based on original three-phase modeling. Fil: Fuentes Mora, Mauren. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Scenna, Nicolas Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Aguirre, Pio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Mussati, Miguel Ceferino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina |
description |
The main purpose of this paper is to analyze the adequacy of some hypotheses assumed in the literature for modeling mass transfer phenomena and hydrodynamics in bioreactors. Four different hydrodynamic models were investigated to simulate the dynamic behavior of an anaerobic fluidized bed reactor (AFBR). A total developed flow condition and the assumption of an incipient gas phase are some of the evaluated hypotheses. All AFBR models simultaneously compute the dynamics of the phases and their components, including the effect of the biofilm growth in the fluidization characteristics. From a computational point of view, ordinary and partial differential equation-based models were calculated using gPROMS (Process System Enterprise Ltd.). Simulations based on a case study were compared. The bioreactor performance was analyzed through the main variable profiles such as phase holdups and bed height, pH, chemical oxygen demand (COD), biofilm concentration and biogas flow rate. In a previous paper [M. Fuentes, M.C. Mussati, N.J. Scenna, P.A. Aguirre, Global modeling and simulation of a three-phase fluidized bed bioreactor, Comput. Chem. Eng., Ms. Ref. No.: 4281, submitted for publication], a heterogeneous model of a three-phase bioreactor system was presented by proposing a one-dimensional (axial) dispersive model. Its results are here used to establish a reference point. For example, the fact of considering a three-phase system with total developed flow (hydrodynamic pseudo-steady state) and complete mixture in all phases causes deviations around 5% in predictions of biofilm concentration, and 0.5% in predictions of liquid and gas phase component concentrations, when compared with results from the phenomenological dispersive model. However, predicted total COD removal efficiency is almost the same for both models. Although the gas holdup is negligible when compared with the liquid and solid ones in anaerobic fluidized bed reactors, results from model simplification assuming an incipient gas phase differ considerably from predictions based on original three-phase modeling. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/83833 Fuentes Mora, Mauren; Scenna, Nicolas Jose; Aguirre, Pio Antonio; Mussati, Miguel Ceferino; Hydrodynamic aspects in anaerobic fluidized bed reactor modeling; Elsevier Science Sa; Chemical Engineering and Processing; 47; 9-10; 12-2008; 1530-1540 0255-2701 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/83833 |
identifier_str_mv |
Fuentes Mora, Mauren; Scenna, Nicolas Jose; Aguirre, Pio Antonio; Mussati, Miguel Ceferino; Hydrodynamic aspects in anaerobic fluidized bed reactor modeling; Elsevier Science Sa; Chemical Engineering and Processing; 47; 9-10; 12-2008; 1530-1540 0255-2701 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cep.2007.07.001 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science Sa |
publisher.none.fl_str_mv |
Elsevier Science Sa |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614014949130240 |
score |
13.070432 |