Complexity-entropy causality plane: A useful approach for distinguishing songs
- Autores
- Ribeiro, Haroldo V.; Zunino, Luciano José; Mendes, Renio Dos Santos; Lenzi, Ervin K.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Nowadays we are often faced with huge databases resulting from the rapid growth of data storage technologies. This is particularly true when dealing with music databases. In this context, it is essential to have techniques and tools able to discriminate properties from these massive sets. In this work, we report on a statistical analysis of more than ten thousand songs aiming to obtain a complexity hierarchy. Our approach is based on the estimation of the permutation entropy combined with an intensive complexity measure, building up the complexity-entropy causality plane. The results obtained indicate that this representation space is very promising to discriminate songs as well as to allow a relative quantitative comparison among songs. Additionally, we believe that the here-reported method may be applied in practical situations since it is simple, robust and has a fast numerical implementation.
Fil: Ribeiro, Haroldo V.. Universidade Estadual de Maringá. Departamento de Física and National Institute of Science and Technology for Complex Systems; Brasil
Fil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina
Fil: Mendes, Renio Dos Santos. Universidade Estadual de Maringá. Departamento de Física and National Institute of Science and Technology for Complex Systems; Brasil
Fil: Lenzi, Ervin K.. Universidade Estadual de Maringá. Departamento de Física and National Institute of Science and Technology for Complex Systems; Brasil - Materia
-
Permutation Entropy
Music
Complexity Measure
Time Series Analysis - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/82914
Ver los metadatos del registro completo
id |
CONICETDig_235dfe1abbb3e1d30aec1ad0bd8746de |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/82914 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Complexity-entropy causality plane: A useful approach for distinguishing songsRibeiro, Haroldo V.Zunino, Luciano JoséMendes, Renio Dos SantosLenzi, Ervin K.Permutation EntropyMusicComplexity MeasureTime Series Analysishttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Nowadays we are often faced with huge databases resulting from the rapid growth of data storage technologies. This is particularly true when dealing with music databases. In this context, it is essential to have techniques and tools able to discriminate properties from these massive sets. In this work, we report on a statistical analysis of more than ten thousand songs aiming to obtain a complexity hierarchy. Our approach is based on the estimation of the permutation entropy combined with an intensive complexity measure, building up the complexity-entropy causality plane. The results obtained indicate that this representation space is very promising to discriminate songs as well as to allow a relative quantitative comparison among songs. Additionally, we believe that the here-reported method may be applied in practical situations since it is simple, robust and has a fast numerical implementation.Fil: Ribeiro, Haroldo V.. Universidade Estadual de Maringá. Departamento de Física and National Institute of Science and Technology for Complex Systems; BrasilFil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; ArgentinaFil: Mendes, Renio Dos Santos. Universidade Estadual de Maringá. Departamento de Física and National Institute of Science and Technology for Complex Systems; BrasilFil: Lenzi, Ervin K.. Universidade Estadual de Maringá. Departamento de Física and National Institute of Science and Technology for Complex Systems; BrasilElsevier Science2012-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/82914Ribeiro, Haroldo V.; Zunino, Luciano José; Mendes, Renio Dos Santos; Lenzi, Ervin K.; Complexity-entropy causality plane: A useful approach for distinguishing songs; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 391; 7; 4-2012; 2421-24280378-4371CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S037843711100906Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2011.12.009info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:44:44Zoai:ri.conicet.gov.ar:11336/82914instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:44:45.243CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Complexity-entropy causality plane: A useful approach for distinguishing songs |
title |
Complexity-entropy causality plane: A useful approach for distinguishing songs |
spellingShingle |
Complexity-entropy causality plane: A useful approach for distinguishing songs Ribeiro, Haroldo V. Permutation Entropy Music Complexity Measure Time Series Analysis |
title_short |
Complexity-entropy causality plane: A useful approach for distinguishing songs |
title_full |
Complexity-entropy causality plane: A useful approach for distinguishing songs |
title_fullStr |
Complexity-entropy causality plane: A useful approach for distinguishing songs |
title_full_unstemmed |
Complexity-entropy causality plane: A useful approach for distinguishing songs |
title_sort |
Complexity-entropy causality plane: A useful approach for distinguishing songs |
dc.creator.none.fl_str_mv |
Ribeiro, Haroldo V. Zunino, Luciano José Mendes, Renio Dos Santos Lenzi, Ervin K. |
author |
Ribeiro, Haroldo V. |
author_facet |
Ribeiro, Haroldo V. Zunino, Luciano José Mendes, Renio Dos Santos Lenzi, Ervin K. |
author_role |
author |
author2 |
Zunino, Luciano José Mendes, Renio Dos Santos Lenzi, Ervin K. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Permutation Entropy Music Complexity Measure Time Series Analysis |
topic |
Permutation Entropy Music Complexity Measure Time Series Analysis |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Nowadays we are often faced with huge databases resulting from the rapid growth of data storage technologies. This is particularly true when dealing with music databases. In this context, it is essential to have techniques and tools able to discriminate properties from these massive sets. In this work, we report on a statistical analysis of more than ten thousand songs aiming to obtain a complexity hierarchy. Our approach is based on the estimation of the permutation entropy combined with an intensive complexity measure, building up the complexity-entropy causality plane. The results obtained indicate that this representation space is very promising to discriminate songs as well as to allow a relative quantitative comparison among songs. Additionally, we believe that the here-reported method may be applied in practical situations since it is simple, robust and has a fast numerical implementation. Fil: Ribeiro, Haroldo V.. Universidade Estadual de Maringá. Departamento de Física and National Institute of Science and Technology for Complex Systems; Brasil Fil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina Fil: Mendes, Renio Dos Santos. Universidade Estadual de Maringá. Departamento de Física and National Institute of Science and Technology for Complex Systems; Brasil Fil: Lenzi, Ervin K.. Universidade Estadual de Maringá. Departamento de Física and National Institute of Science and Technology for Complex Systems; Brasil |
description |
Nowadays we are often faced with huge databases resulting from the rapid growth of data storage technologies. This is particularly true when dealing with music databases. In this context, it is essential to have techniques and tools able to discriminate properties from these massive sets. In this work, we report on a statistical analysis of more than ten thousand songs aiming to obtain a complexity hierarchy. Our approach is based on the estimation of the permutation entropy combined with an intensive complexity measure, building up the complexity-entropy causality plane. The results obtained indicate that this representation space is very promising to discriminate songs as well as to allow a relative quantitative comparison among songs. Additionally, we believe that the here-reported method may be applied in practical situations since it is simple, robust and has a fast numerical implementation. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/82914 Ribeiro, Haroldo V.; Zunino, Luciano José; Mendes, Renio Dos Santos; Lenzi, Ervin K.; Complexity-entropy causality plane: A useful approach for distinguishing songs; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 391; 7; 4-2012; 2421-2428 0378-4371 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/82914 |
identifier_str_mv |
Ribeiro, Haroldo V.; Zunino, Luciano José; Mendes, Renio Dos Santos; Lenzi, Ervin K.; Complexity-entropy causality plane: A useful approach for distinguishing songs; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 391; 7; 4-2012; 2421-2428 0378-4371 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S037843711100906X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2011.12.009 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614485760802816 |
score |
13.070432 |