Complexity-entropy causality plane: A useful approach for distinguishing songs

Autores
Ribeiro, Haroldo V.; Zunino, Luciano José; Mendes, Renio Dos Santos; Lenzi, Ervin K.
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Nowadays we are often faced with huge databases resulting from the rapid growth of data storage technologies. This is particularly true when dealing with music databases. In this context, it is essential to have techniques and tools able to discriminate properties from these massive sets. In this work, we report on a statistical analysis of more than ten thousand songs aiming to obtain a complexity hierarchy. Our approach is based on the estimation of the permutation entropy combined with an intensive complexity measure, building up the complexity-entropy causality plane. The results obtained indicate that this representation space is very promising to discriminate songs as well as to allow a relative quantitative comparison among songs. Additionally, we believe that the here-reported method may be applied in practical situations since it is simple, robust and has a fast numerical implementation.
Fil: Ribeiro, Haroldo V.. Universidade Estadual de Maringá. Departamento de Física and National Institute of Science and Technology for Complex Systems; Brasil
Fil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina
Fil: Mendes, Renio Dos Santos. Universidade Estadual de Maringá. Departamento de Física and National Institute of Science and Technology for Complex Systems; Brasil
Fil: Lenzi, Ervin K.. Universidade Estadual de Maringá. Departamento de Física and National Institute of Science and Technology for Complex Systems; Brasil
Materia
Permutation Entropy
Music
Complexity Measure
Time Series Analysis
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/82914

id CONICETDig_235dfe1abbb3e1d30aec1ad0bd8746de
oai_identifier_str oai:ri.conicet.gov.ar:11336/82914
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Complexity-entropy causality plane: A useful approach for distinguishing songsRibeiro, Haroldo V.Zunino, Luciano JoséMendes, Renio Dos SantosLenzi, Ervin K.Permutation EntropyMusicComplexity MeasureTime Series Analysishttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Nowadays we are often faced with huge databases resulting from the rapid growth of data storage technologies. This is particularly true when dealing with music databases. In this context, it is essential to have techniques and tools able to discriminate properties from these massive sets. In this work, we report on a statistical analysis of more than ten thousand songs aiming to obtain a complexity hierarchy. Our approach is based on the estimation of the permutation entropy combined with an intensive complexity measure, building up the complexity-entropy causality plane. The results obtained indicate that this representation space is very promising to discriminate songs as well as to allow a relative quantitative comparison among songs. Additionally, we believe that the here-reported method may be applied in practical situations since it is simple, robust and has a fast numerical implementation.Fil: Ribeiro, Haroldo V.. Universidade Estadual de Maringá. Departamento de Física and National Institute of Science and Technology for Complex Systems; BrasilFil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; ArgentinaFil: Mendes, Renio Dos Santos. Universidade Estadual de Maringá. Departamento de Física and National Institute of Science and Technology for Complex Systems; BrasilFil: Lenzi, Ervin K.. Universidade Estadual de Maringá. Departamento de Física and National Institute of Science and Technology for Complex Systems; BrasilElsevier Science2012-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/82914Ribeiro, Haroldo V.; Zunino, Luciano José; Mendes, Renio Dos Santos; Lenzi, Ervin K.; Complexity-entropy causality plane: A useful approach for distinguishing songs; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 391; 7; 4-2012; 2421-24280378-4371CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S037843711100906Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2011.12.009info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:44:44Zoai:ri.conicet.gov.ar:11336/82914instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:44:45.243CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Complexity-entropy causality plane: A useful approach for distinguishing songs
title Complexity-entropy causality plane: A useful approach for distinguishing songs
spellingShingle Complexity-entropy causality plane: A useful approach for distinguishing songs
Ribeiro, Haroldo V.
Permutation Entropy
Music
Complexity Measure
Time Series Analysis
title_short Complexity-entropy causality plane: A useful approach for distinguishing songs
title_full Complexity-entropy causality plane: A useful approach for distinguishing songs
title_fullStr Complexity-entropy causality plane: A useful approach for distinguishing songs
title_full_unstemmed Complexity-entropy causality plane: A useful approach for distinguishing songs
title_sort Complexity-entropy causality plane: A useful approach for distinguishing songs
dc.creator.none.fl_str_mv Ribeiro, Haroldo V.
Zunino, Luciano José
Mendes, Renio Dos Santos
Lenzi, Ervin K.
author Ribeiro, Haroldo V.
author_facet Ribeiro, Haroldo V.
Zunino, Luciano José
Mendes, Renio Dos Santos
Lenzi, Ervin K.
author_role author
author2 Zunino, Luciano José
Mendes, Renio Dos Santos
Lenzi, Ervin K.
author2_role author
author
author
dc.subject.none.fl_str_mv Permutation Entropy
Music
Complexity Measure
Time Series Analysis
topic Permutation Entropy
Music
Complexity Measure
Time Series Analysis
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Nowadays we are often faced with huge databases resulting from the rapid growth of data storage technologies. This is particularly true when dealing with music databases. In this context, it is essential to have techniques and tools able to discriminate properties from these massive sets. In this work, we report on a statistical analysis of more than ten thousand songs aiming to obtain a complexity hierarchy. Our approach is based on the estimation of the permutation entropy combined with an intensive complexity measure, building up the complexity-entropy causality plane. The results obtained indicate that this representation space is very promising to discriminate songs as well as to allow a relative quantitative comparison among songs. Additionally, we believe that the here-reported method may be applied in practical situations since it is simple, robust and has a fast numerical implementation.
Fil: Ribeiro, Haroldo V.. Universidade Estadual de Maringá. Departamento de Física and National Institute of Science and Technology for Complex Systems; Brasil
Fil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina
Fil: Mendes, Renio Dos Santos. Universidade Estadual de Maringá. Departamento de Física and National Institute of Science and Technology for Complex Systems; Brasil
Fil: Lenzi, Ervin K.. Universidade Estadual de Maringá. Departamento de Física and National Institute of Science and Technology for Complex Systems; Brasil
description Nowadays we are often faced with huge databases resulting from the rapid growth of data storage technologies. This is particularly true when dealing with music databases. In this context, it is essential to have techniques and tools able to discriminate properties from these massive sets. In this work, we report on a statistical analysis of more than ten thousand songs aiming to obtain a complexity hierarchy. Our approach is based on the estimation of the permutation entropy combined with an intensive complexity measure, building up the complexity-entropy causality plane. The results obtained indicate that this representation space is very promising to discriminate songs as well as to allow a relative quantitative comparison among songs. Additionally, we believe that the here-reported method may be applied in practical situations since it is simple, robust and has a fast numerical implementation.
publishDate 2012
dc.date.none.fl_str_mv 2012-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/82914
Ribeiro, Haroldo V.; Zunino, Luciano José; Mendes, Renio Dos Santos; Lenzi, Ervin K.; Complexity-entropy causality plane: A useful approach for distinguishing songs; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 391; 7; 4-2012; 2421-2428
0378-4371
CONICET Digital
CONICET
url http://hdl.handle.net/11336/82914
identifier_str_mv Ribeiro, Haroldo V.; Zunino, Luciano José; Mendes, Renio Dos Santos; Lenzi, Ervin K.; Complexity-entropy causality plane: A useful approach for distinguishing songs; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 391; 7; 4-2012; 2421-2428
0378-4371
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S037843711100906X
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2011.12.009
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614485760802816
score 13.070432