Subsurface temperature change attributed to climate change at the northern latitude site of Kapuskasing, Canada
- Autores
- Novara, Ivan Lionel; Berdichevsky, Daniel B.; Piacentini, Ruben Dario Narciso
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Subsurface temperatures have been measured in different regions of the world, usually near the surface up to a depth of about a hundred meters. In this work a forward model calculation for a Northern Hemisphere soil temperature site at Kapuskasing, Canada, is presented, employing the solution of the differential equation of heat conduction through a semi-infinite homogeneous solid, subject to surface boundary conditions determined by surface air temperature. In this way, a detailed analysis is made of the subsurface temperature as a function of ground depth and for the time interval ranging from 1970 to the future (including the next century), for different scenarios of climate change. From these results, it was possible to determine the following characteristic quantities: (a) the depth where the surface perturbation (practically) finishes (in the range of about 180-200 m); (b) the depth where the subsurface temperature changes its slope from negative to positive; (c) the temperature change at the surface for the years where data exist; (d) the thermal gradient at steady state in the starting year (1880); (e) the temperature differences extrapolated at surface and at a 20 m depth, this last value corresponding to the depth at which seasonal and diurnal temperature variations are negligible; (f) the heat flow at surface to the inner part of the soil attributed to climate change, and (g) the temperature changes at surface for the 100 years interval (1980-2080) and mainly for the next century (2080-2180), for each site and for each IPCC Representative Concentration Pathway (RCP) scenario. As an example, the impact of the change in mean annual soil temperature due to global warming in near-surface geothermal energy is described.
Fil: Novara, Ivan Lionel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Fil: Berdichevsky, Daniel B.. National Aeronautics and Space Administration; Estados Unidos
Fil: Piacentini, Ruben Dario Narciso. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina - Materia
-
Subsurface temperature
Climate Change
Kapuskasing
Canada - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/264130
Ver los metadatos del registro completo
id |
CONICETDig_812bc090cbc3f8e726520f632a1f8b6a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/264130 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Subsurface temperature change attributed to climate change at the northern latitude site of Kapuskasing, CanadaNovara, Ivan LionelBerdichevsky, Daniel B.Piacentini, Ruben Dario NarcisoSubsurface temperatureClimate ChangeKapuskasingCanadahttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Subsurface temperatures have been measured in different regions of the world, usually near the surface up to a depth of about a hundred meters. In this work a forward model calculation for a Northern Hemisphere soil temperature site at Kapuskasing, Canada, is presented, employing the solution of the differential equation of heat conduction through a semi-infinite homogeneous solid, subject to surface boundary conditions determined by surface air temperature. In this way, a detailed analysis is made of the subsurface temperature as a function of ground depth and for the time interval ranging from 1970 to the future (including the next century), for different scenarios of climate change. From these results, it was possible to determine the following characteristic quantities: (a) the depth where the surface perturbation (practically) finishes (in the range of about 180-200 m); (b) the depth where the subsurface temperature changes its slope from negative to positive; (c) the temperature change at the surface for the years where data exist; (d) the thermal gradient at steady state in the starting year (1880); (e) the temperature differences extrapolated at surface and at a 20 m depth, this last value corresponding to the depth at which seasonal and diurnal temperature variations are negligible; (f) the heat flow at surface to the inner part of the soil attributed to climate change, and (g) the temperature changes at surface for the 100 years interval (1980-2080) and mainly for the next century (2080-2180), for each site and for each IPCC Representative Concentration Pathway (RCP) scenario. As an example, the impact of the change in mean annual soil temperature due to global warming in near-surface geothermal energy is described.Fil: Novara, Ivan Lionel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Berdichevsky, Daniel B.. National Aeronautics and Space Administration; Estados UnidosFil: Piacentini, Ruben Dario Narciso. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaUniversidad Nacional Autónoma de México. Centro Ciencias de la Atmósfera2024-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/264130Novara, Ivan Lionel; Berdichevsky, Daniel B.; Piacentini, Ruben Dario Narciso; Subsurface temperature change attributed to climate change at the northern latitude site of Kapuskasing, Canada; Universidad Nacional Autónoma de México. Centro Ciencias de la Atmósfera; Atmósfera; 38; 5-2024; 299-3090187-6236CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.revistascca.unam.mx/atm/index.php/atm/article/view/53211info:eu-repo/semantics/altIdentifier/doi/10.20937/ATM.53211info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:39:07Zoai:ri.conicet.gov.ar:11336/264130instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:39:07.834CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Subsurface temperature change attributed to climate change at the northern latitude site of Kapuskasing, Canada |
title |
Subsurface temperature change attributed to climate change at the northern latitude site of Kapuskasing, Canada |
spellingShingle |
Subsurface temperature change attributed to climate change at the northern latitude site of Kapuskasing, Canada Novara, Ivan Lionel Subsurface temperature Climate Change Kapuskasing Canada |
title_short |
Subsurface temperature change attributed to climate change at the northern latitude site of Kapuskasing, Canada |
title_full |
Subsurface temperature change attributed to climate change at the northern latitude site of Kapuskasing, Canada |
title_fullStr |
Subsurface temperature change attributed to climate change at the northern latitude site of Kapuskasing, Canada |
title_full_unstemmed |
Subsurface temperature change attributed to climate change at the northern latitude site of Kapuskasing, Canada |
title_sort |
Subsurface temperature change attributed to climate change at the northern latitude site of Kapuskasing, Canada |
dc.creator.none.fl_str_mv |
Novara, Ivan Lionel Berdichevsky, Daniel B. Piacentini, Ruben Dario Narciso |
author |
Novara, Ivan Lionel |
author_facet |
Novara, Ivan Lionel Berdichevsky, Daniel B. Piacentini, Ruben Dario Narciso |
author_role |
author |
author2 |
Berdichevsky, Daniel B. Piacentini, Ruben Dario Narciso |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Subsurface temperature Climate Change Kapuskasing Canada |
topic |
Subsurface temperature Climate Change Kapuskasing Canada |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Subsurface temperatures have been measured in different regions of the world, usually near the surface up to a depth of about a hundred meters. In this work a forward model calculation for a Northern Hemisphere soil temperature site at Kapuskasing, Canada, is presented, employing the solution of the differential equation of heat conduction through a semi-infinite homogeneous solid, subject to surface boundary conditions determined by surface air temperature. In this way, a detailed analysis is made of the subsurface temperature as a function of ground depth and for the time interval ranging from 1970 to the future (including the next century), for different scenarios of climate change. From these results, it was possible to determine the following characteristic quantities: (a) the depth where the surface perturbation (practically) finishes (in the range of about 180-200 m); (b) the depth where the subsurface temperature changes its slope from negative to positive; (c) the temperature change at the surface for the years where data exist; (d) the thermal gradient at steady state in the starting year (1880); (e) the temperature differences extrapolated at surface and at a 20 m depth, this last value corresponding to the depth at which seasonal and diurnal temperature variations are negligible; (f) the heat flow at surface to the inner part of the soil attributed to climate change, and (g) the temperature changes at surface for the 100 years interval (1980-2080) and mainly for the next century (2080-2180), for each site and for each IPCC Representative Concentration Pathway (RCP) scenario. As an example, the impact of the change in mean annual soil temperature due to global warming in near-surface geothermal energy is described. Fil: Novara, Ivan Lionel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina Fil: Berdichevsky, Daniel B.. National Aeronautics and Space Administration; Estados Unidos Fil: Piacentini, Ruben Dario Narciso. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina |
description |
Subsurface temperatures have been measured in different regions of the world, usually near the surface up to a depth of about a hundred meters. In this work a forward model calculation for a Northern Hemisphere soil temperature site at Kapuskasing, Canada, is presented, employing the solution of the differential equation of heat conduction through a semi-infinite homogeneous solid, subject to surface boundary conditions determined by surface air temperature. In this way, a detailed analysis is made of the subsurface temperature as a function of ground depth and for the time interval ranging from 1970 to the future (including the next century), for different scenarios of climate change. From these results, it was possible to determine the following characteristic quantities: (a) the depth where the surface perturbation (practically) finishes (in the range of about 180-200 m); (b) the depth where the subsurface temperature changes its slope from negative to positive; (c) the temperature change at the surface for the years where data exist; (d) the thermal gradient at steady state in the starting year (1880); (e) the temperature differences extrapolated at surface and at a 20 m depth, this last value corresponding to the depth at which seasonal and diurnal temperature variations are negligible; (f) the heat flow at surface to the inner part of the soil attributed to climate change, and (g) the temperature changes at surface for the 100 years interval (1980-2080) and mainly for the next century (2080-2180), for each site and for each IPCC Representative Concentration Pathway (RCP) scenario. As an example, the impact of the change in mean annual soil temperature due to global warming in near-surface geothermal energy is described. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/264130 Novara, Ivan Lionel; Berdichevsky, Daniel B.; Piacentini, Ruben Dario Narciso; Subsurface temperature change attributed to climate change at the northern latitude site of Kapuskasing, Canada; Universidad Nacional Autónoma de México. Centro Ciencias de la Atmósfera; Atmósfera; 38; 5-2024; 299-309 0187-6236 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/264130 |
identifier_str_mv |
Novara, Ivan Lionel; Berdichevsky, Daniel B.; Piacentini, Ruben Dario Narciso; Subsurface temperature change attributed to climate change at the northern latitude site of Kapuskasing, Canada; Universidad Nacional Autónoma de México. Centro Ciencias de la Atmósfera; Atmósfera; 38; 5-2024; 299-309 0187-6236 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.revistascca.unam.mx/atm/index.php/atm/article/view/53211 info:eu-repo/semantics/altIdentifier/doi/10.20937/ATM.53211 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Nacional Autónoma de México. Centro Ciencias de la Atmósfera |
publisher.none.fl_str_mv |
Universidad Nacional Autónoma de México. Centro Ciencias de la Atmósfera |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613237268545536 |
score |
13.070432 |