Influence of subsurface oxidation on the structure, stability, and reactivity of grafted Si(111) surfaces

Autores
Juarez, Maria Fernanda; Soria, Federico Ariel; Patrito, Eduardo Martin; Paredes Olivera, Patricia
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We investigated the influence of intermolecular interactions and subsurface oxidation on the structure, surface bonding, and reactivity of compact monolayers of small organic and inorganic molecules bound to the Si(111) surface via Si-C, Si-N, and Si-O bonds. We considered the following modified surfaces: Si-CH3, Si-CCH, Si-CN, Si-CH2CH3, Si-OCH 3, Si-OH, Si-NH2, Si-NHOH, and Si-ONH2. The highest hydrogen bond strength (7.5 kcal/mol) was observed for the (1 × 1) Si-NHOH monolayer. The (1 × 1) Si-CH2CH3 monolayer had the highest repulsion at the DFT level, 9.1 kcal/mol. However, inclusion of dispersion interactions yielded a repulsion of only 1.8 kcal/mol. Subsurface oxidation was investigated for -H, -CH3, and -CH2CH 3 terminated surfaces with surface coverages of 100 and 50%. The oxidation of the third Si-Si backbond is considerably more exothermic than me oxidation of the first and second backbonds. For monolayers with a surface coverage of 50%, the oxidation of alkylated silicon atoms is more stable than the oxidation of hydrogenated silicon atoms. The oxidation of alkylated silicon atoms stabilizes the organic monolayer for two reasons: a decrease of repulsive interactions between adjacent alkyl chains (due to the increase in intermolecular separations) and a strengmening of the Si-C surface bond. The reactivity of the grafted surfaces was investigated in the low coverage limit for the surface hydroxylation reaction with water. The highest activation barriers are obtained for the -CH3 (40.3 kcal/mol) and -CH 2CH3 (40.4 kcal/mol) terminated surfaces. The presence of conjugation in the organic molecule lowers the activation barrier. On the -CCH terminated surface, the activation energy decreases to 29.2 kcal/mol. The nucleophilic attack of silicon by water is facilitated on the -Cl, -OCH 3, and -NH2 terminated surfaces due to the increased positive charge of the silicon atom. The -NH2 and -Cl grafted surfaces are the most reactive with activation energies of 7.9 and 13.4 kcal/mol.
Fil: Juarez, Maria Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Soria, Federico Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Patrito, Eduardo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Paredes Olivera, Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Materia
Silicon
Subsurface Oxidation
Surface Modification
Ab Initio
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/114040

id CONICETDig_1298be4f68c0f68e02ba24b2ac73a49a
oai_identifier_str oai:ri.conicet.gov.ar:11336/114040
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Influence of subsurface oxidation on the structure, stability, and reactivity of grafted Si(111) surfacesJuarez, Maria FernandaSoria, Federico ArielPatrito, Eduardo MartinParedes Olivera, PatriciaSiliconSubsurface OxidationSurface ModificationAb Initiohttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1We investigated the influence of intermolecular interactions and subsurface oxidation on the structure, surface bonding, and reactivity of compact monolayers of small organic and inorganic molecules bound to the Si(111) surface via Si-C, Si-N, and Si-O bonds. We considered the following modified surfaces: Si-CH3, Si-CCH, Si-CN, Si-CH2CH3, Si-OCH 3, Si-OH, Si-NH2, Si-NHOH, and Si-ONH2. The highest hydrogen bond strength (7.5 kcal/mol) was observed for the (1 × 1) Si-NHOH monolayer. The (1 × 1) Si-CH2CH3 monolayer had the highest repulsion at the DFT level, 9.1 kcal/mol. However, inclusion of dispersion interactions yielded a repulsion of only 1.8 kcal/mol. Subsurface oxidation was investigated for -H, -CH3, and -CH2CH 3 terminated surfaces with surface coverages of 100 and 50%. The oxidation of the third Si-Si backbond is considerably more exothermic than me oxidation of the first and second backbonds. For monolayers with a surface coverage of 50%, the oxidation of alkylated silicon atoms is more stable than the oxidation of hydrogenated silicon atoms. The oxidation of alkylated silicon atoms stabilizes the organic monolayer for two reasons: a decrease of repulsive interactions between adjacent alkyl chains (due to the increase in intermolecular separations) and a strengmening of the Si-C surface bond. The reactivity of the grafted surfaces was investigated in the low coverage limit for the surface hydroxylation reaction with water. The highest activation barriers are obtained for the -CH3 (40.3 kcal/mol) and -CH 2CH3 (40.4 kcal/mol) terminated surfaces. The presence of conjugation in the organic molecule lowers the activation barrier. On the -CCH terminated surface, the activation energy decreases to 29.2 kcal/mol. The nucleophilic attack of silicon by water is facilitated on the -Cl, -OCH 3, and -NH2 terminated surfaces due to the increased positive charge of the silicon atom. The -NH2 and -Cl grafted surfaces are the most reactive with activation energies of 7.9 and 13.4 kcal/mol.Fil: Juarez, Maria Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Soria, Federico Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Patrito, Eduardo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Paredes Olivera, Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaAmerican Chemical Society2008-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/114040Juarez, Maria Fernanda; Soria, Federico Ariel; Patrito, Eduardo Martin; Paredes Olivera, Patricia; Influence of subsurface oxidation on the structure, stability, and reactivity of grafted Si(111) surfaces; American Chemical Society; Journal of Physical Chemistry C; 112; 38; 9-2008; 14867-148771932-74471932-7455CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/jp711307pinfo:eu-repo/semantics/altIdentifier/doi/10.1021/jp711307pinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:01:23Zoai:ri.conicet.gov.ar:11336/114040instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:01:23.339CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Influence of subsurface oxidation on the structure, stability, and reactivity of grafted Si(111) surfaces
title Influence of subsurface oxidation on the structure, stability, and reactivity of grafted Si(111) surfaces
spellingShingle Influence of subsurface oxidation on the structure, stability, and reactivity of grafted Si(111) surfaces
Juarez, Maria Fernanda
Silicon
Subsurface Oxidation
Surface Modification
Ab Initio
title_short Influence of subsurface oxidation on the structure, stability, and reactivity of grafted Si(111) surfaces
title_full Influence of subsurface oxidation on the structure, stability, and reactivity of grafted Si(111) surfaces
title_fullStr Influence of subsurface oxidation on the structure, stability, and reactivity of grafted Si(111) surfaces
title_full_unstemmed Influence of subsurface oxidation on the structure, stability, and reactivity of grafted Si(111) surfaces
title_sort Influence of subsurface oxidation on the structure, stability, and reactivity of grafted Si(111) surfaces
dc.creator.none.fl_str_mv Juarez, Maria Fernanda
Soria, Federico Ariel
Patrito, Eduardo Martin
Paredes Olivera, Patricia
author Juarez, Maria Fernanda
author_facet Juarez, Maria Fernanda
Soria, Federico Ariel
Patrito, Eduardo Martin
Paredes Olivera, Patricia
author_role author
author2 Soria, Federico Ariel
Patrito, Eduardo Martin
Paredes Olivera, Patricia
author2_role author
author
author
dc.subject.none.fl_str_mv Silicon
Subsurface Oxidation
Surface Modification
Ab Initio
topic Silicon
Subsurface Oxidation
Surface Modification
Ab Initio
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We investigated the influence of intermolecular interactions and subsurface oxidation on the structure, surface bonding, and reactivity of compact monolayers of small organic and inorganic molecules bound to the Si(111) surface via Si-C, Si-N, and Si-O bonds. We considered the following modified surfaces: Si-CH3, Si-CCH, Si-CN, Si-CH2CH3, Si-OCH 3, Si-OH, Si-NH2, Si-NHOH, and Si-ONH2. The highest hydrogen bond strength (7.5 kcal/mol) was observed for the (1 × 1) Si-NHOH monolayer. The (1 × 1) Si-CH2CH3 monolayer had the highest repulsion at the DFT level, 9.1 kcal/mol. However, inclusion of dispersion interactions yielded a repulsion of only 1.8 kcal/mol. Subsurface oxidation was investigated for -H, -CH3, and -CH2CH 3 terminated surfaces with surface coverages of 100 and 50%. The oxidation of the third Si-Si backbond is considerably more exothermic than me oxidation of the first and second backbonds. For monolayers with a surface coverage of 50%, the oxidation of alkylated silicon atoms is more stable than the oxidation of hydrogenated silicon atoms. The oxidation of alkylated silicon atoms stabilizes the organic monolayer for two reasons: a decrease of repulsive interactions between adjacent alkyl chains (due to the increase in intermolecular separations) and a strengmening of the Si-C surface bond. The reactivity of the grafted surfaces was investigated in the low coverage limit for the surface hydroxylation reaction with water. The highest activation barriers are obtained for the -CH3 (40.3 kcal/mol) and -CH 2CH3 (40.4 kcal/mol) terminated surfaces. The presence of conjugation in the organic molecule lowers the activation barrier. On the -CCH terminated surface, the activation energy decreases to 29.2 kcal/mol. The nucleophilic attack of silicon by water is facilitated on the -Cl, -OCH 3, and -NH2 terminated surfaces due to the increased positive charge of the silicon atom. The -NH2 and -Cl grafted surfaces are the most reactive with activation energies of 7.9 and 13.4 kcal/mol.
Fil: Juarez, Maria Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Soria, Federico Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Patrito, Eduardo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Paredes Olivera, Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
description We investigated the influence of intermolecular interactions and subsurface oxidation on the structure, surface bonding, and reactivity of compact monolayers of small organic and inorganic molecules bound to the Si(111) surface via Si-C, Si-N, and Si-O bonds. We considered the following modified surfaces: Si-CH3, Si-CCH, Si-CN, Si-CH2CH3, Si-OCH 3, Si-OH, Si-NH2, Si-NHOH, and Si-ONH2. The highest hydrogen bond strength (7.5 kcal/mol) was observed for the (1 × 1) Si-NHOH monolayer. The (1 × 1) Si-CH2CH3 monolayer had the highest repulsion at the DFT level, 9.1 kcal/mol. However, inclusion of dispersion interactions yielded a repulsion of only 1.8 kcal/mol. Subsurface oxidation was investigated for -H, -CH3, and -CH2CH 3 terminated surfaces with surface coverages of 100 and 50%. The oxidation of the third Si-Si backbond is considerably more exothermic than me oxidation of the first and second backbonds. For monolayers with a surface coverage of 50%, the oxidation of alkylated silicon atoms is more stable than the oxidation of hydrogenated silicon atoms. The oxidation of alkylated silicon atoms stabilizes the organic monolayer for two reasons: a decrease of repulsive interactions between adjacent alkyl chains (due to the increase in intermolecular separations) and a strengmening of the Si-C surface bond. The reactivity of the grafted surfaces was investigated in the low coverage limit for the surface hydroxylation reaction with water. The highest activation barriers are obtained for the -CH3 (40.3 kcal/mol) and -CH 2CH3 (40.4 kcal/mol) terminated surfaces. The presence of conjugation in the organic molecule lowers the activation barrier. On the -CCH terminated surface, the activation energy decreases to 29.2 kcal/mol. The nucleophilic attack of silicon by water is facilitated on the -Cl, -OCH 3, and -NH2 terminated surfaces due to the increased positive charge of the silicon atom. The -NH2 and -Cl grafted surfaces are the most reactive with activation energies of 7.9 and 13.4 kcal/mol.
publishDate 2008
dc.date.none.fl_str_mv 2008-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/114040
Juarez, Maria Fernanda; Soria, Federico Ariel; Patrito, Eduardo Martin; Paredes Olivera, Patricia; Influence of subsurface oxidation on the structure, stability, and reactivity of grafted Si(111) surfaces; American Chemical Society; Journal of Physical Chemistry C; 112; 38; 9-2008; 14867-14877
1932-7447
1932-7455
CONICET Digital
CONICET
url http://hdl.handle.net/11336/114040
identifier_str_mv Juarez, Maria Fernanda; Soria, Federico Ariel; Patrito, Eduardo Martin; Paredes Olivera, Patricia; Influence of subsurface oxidation on the structure, stability, and reactivity of grafted Si(111) surfaces; American Chemical Society; Journal of Physical Chemistry C; 112; 38; 9-2008; 14867-14877
1932-7447
1932-7455
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/jp711307p
info:eu-repo/semantics/altIdentifier/doi/10.1021/jp711307p
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842979945231417344
score 12.993085