A new metaheuristic based approach for the design of sensor networks

Autores
Carnero, Mercedes; Hernández, José; Sanchez, Mabel Cristina
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The optimal design of sensor networks consists in selecting the type, number and location of sensors that provide the required quantity and quality of process information by optimizing an appropriate objective function. The problem is multimodal and involves many binary variables, therefore a huge combinatorial optimization problem results. In this work, the design is solved using a metaheuristic based approach. A strategy that combines the advantages of Tabu Search and Estimation of Distribution Algorithms is presented, which is able to solve high scale designs since it can be implemented to run in parallel. Application results of the methodology to the optimal selection of instruments for networks of incremental size are provided.
Fil: Carnero, Mercedes. Universidad Nacional de Río Cuarto. Facultad de Ingeniería; Argentina
Fil: Hernández, José. Universidad Nacional de Río Cuarto. Facultad de Ingeniería; Argentina
Fil: Sanchez, Mabel Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (i); Argentina
Materia
Sensor Network Design
Combinatorial Optimization
Estimation of Distribution Algorithms
Tabu Search
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/11869

id CONICETDig_810352dc8ed294ec59e43691b81d14f0
oai_identifier_str oai:ri.conicet.gov.ar:11336/11869
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A new metaheuristic based approach for the design of sensor networksCarnero, MercedesHernández, JoséSanchez, Mabel CristinaSensor Network DesignCombinatorial OptimizationEstimation of Distribution AlgorithmsTabu Searchhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2The optimal design of sensor networks consists in selecting the type, number and location of sensors that provide the required quantity and quality of process information by optimizing an appropriate objective function. The problem is multimodal and involves many binary variables, therefore a huge combinatorial optimization problem results. In this work, the design is solved using a metaheuristic based approach. A strategy that combines the advantages of Tabu Search and Estimation of Distribution Algorithms is presented, which is able to solve high scale designs since it can be implemented to run in parallel. Application results of the methodology to the optimal selection of instruments for networks of incremental size are provided.Fil: Carnero, Mercedes. Universidad Nacional de Río Cuarto. Facultad de Ingeniería; ArgentinaFil: Hernández, José. Universidad Nacional de Río Cuarto. Facultad de Ingeniería; ArgentinaFil: Sanchez, Mabel Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (i); ArgentinaElsevier2013-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/11869Carnero, Mercedes; Hernández, José; Sanchez, Mabel Cristina; A new metaheuristic based approach for the design of sensor networks; Elsevier; Computers and Chemical Engineering; 55; 5-2013; 83-960098-1354enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0098135413001142info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2013.04.007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:23:00Zoai:ri.conicet.gov.ar:11336/11869instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:23:01.115CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A new metaheuristic based approach for the design of sensor networks
title A new metaheuristic based approach for the design of sensor networks
spellingShingle A new metaheuristic based approach for the design of sensor networks
Carnero, Mercedes
Sensor Network Design
Combinatorial Optimization
Estimation of Distribution Algorithms
Tabu Search
title_short A new metaheuristic based approach for the design of sensor networks
title_full A new metaheuristic based approach for the design of sensor networks
title_fullStr A new metaheuristic based approach for the design of sensor networks
title_full_unstemmed A new metaheuristic based approach for the design of sensor networks
title_sort A new metaheuristic based approach for the design of sensor networks
dc.creator.none.fl_str_mv Carnero, Mercedes
Hernández, José
Sanchez, Mabel Cristina
author Carnero, Mercedes
author_facet Carnero, Mercedes
Hernández, José
Sanchez, Mabel Cristina
author_role author
author2 Hernández, José
Sanchez, Mabel Cristina
author2_role author
author
dc.subject.none.fl_str_mv Sensor Network Design
Combinatorial Optimization
Estimation of Distribution Algorithms
Tabu Search
topic Sensor Network Design
Combinatorial Optimization
Estimation of Distribution Algorithms
Tabu Search
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The optimal design of sensor networks consists in selecting the type, number and location of sensors that provide the required quantity and quality of process information by optimizing an appropriate objective function. The problem is multimodal and involves many binary variables, therefore a huge combinatorial optimization problem results. In this work, the design is solved using a metaheuristic based approach. A strategy that combines the advantages of Tabu Search and Estimation of Distribution Algorithms is presented, which is able to solve high scale designs since it can be implemented to run in parallel. Application results of the methodology to the optimal selection of instruments for networks of incremental size are provided.
Fil: Carnero, Mercedes. Universidad Nacional de Río Cuarto. Facultad de Ingeniería; Argentina
Fil: Hernández, José. Universidad Nacional de Río Cuarto. Facultad de Ingeniería; Argentina
Fil: Sanchez, Mabel Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (i); Argentina
description The optimal design of sensor networks consists in selecting the type, number and location of sensors that provide the required quantity and quality of process information by optimizing an appropriate objective function. The problem is multimodal and involves many binary variables, therefore a huge combinatorial optimization problem results. In this work, the design is solved using a metaheuristic based approach. A strategy that combines the advantages of Tabu Search and Estimation of Distribution Algorithms is presented, which is able to solve high scale designs since it can be implemented to run in parallel. Application results of the methodology to the optimal selection of instruments for networks of incremental size are provided.
publishDate 2013
dc.date.none.fl_str_mv 2013-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/11869
Carnero, Mercedes; Hernández, José; Sanchez, Mabel Cristina; A new metaheuristic based approach for the design of sensor networks; Elsevier; Computers and Chemical Engineering; 55; 5-2013; 83-96
0098-1354
url http://hdl.handle.net/11336/11869
identifier_str_mv Carnero, Mercedes; Hernández, José; Sanchez, Mabel Cristina; A new metaheuristic based approach for the design of sensor networks; Elsevier; Computers and Chemical Engineering; 55; 5-2013; 83-96
0098-1354
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0098135413001142
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2013.04.007
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981268825833472
score 12.48226