An evolutionary approach for the design of nonredundant sensor networks
- Autores
- Carnero, Mercedes del Carmen; Hernández, José; Sanchez, Mabel Cristina; Bandoni, Jose Alberto
- Año de publicación
- 2001
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work, solution strategies for the optimal design of nonredundant observable linear sensor networks are discussed. The Greedy algorithm allows the problem only to be tackled for a subset of optimization criteria. Particular deterministic techniques or general evolutionary strategies are necessary to solve the problem for more complex objective functions. In this context, a procedure based on the application of genetic algorithms (GAs) and linear algebra is presented. Ad hoc operators are designed for the crossover and mutation operations because the classic genetic operators perform poorly. In contrast to ad hoc deterministic codes, which find the design solution for each specific criteria, this strategy allows the problem to be solved with different objective functions using the same implementation. Furthermore, this code is extended to handle multiobjective problems through a modification of only the selection operator. An industrial example is provided to show the efficiency of the algorithm.
Fil: Carnero, Mercedes del Carmen. Universidad Nacional de Río Cuarto. Facultad de Ingeniería; Argentina
Fil: Hernández, José. Universidad Nacional de Río Cuarto. Facultad de Ingeniería; Argentina
Fil: Sanchez, Mabel Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Bandoni, Jose Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina - Materia
-
Sensor Networks
Genetic Algorithms - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/38063
Ver los metadatos del registro completo
id |
CONICETDig_73e315ce5a0a87c9c5519974c4f741b0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/38063 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An evolutionary approach for the design of nonredundant sensor networksCarnero, Mercedes del CarmenHernández, JoséSanchez, Mabel CristinaBandoni, Jose AlbertoSensor NetworksGenetic Algorithmshttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2In this work, solution strategies for the optimal design of nonredundant observable linear sensor networks are discussed. The Greedy algorithm allows the problem only to be tackled for a subset of optimization criteria. Particular deterministic techniques or general evolutionary strategies are necessary to solve the problem for more complex objective functions. In this context, a procedure based on the application of genetic algorithms (GAs) and linear algebra is presented. Ad hoc operators are designed for the crossover and mutation operations because the classic genetic operators perform poorly. In contrast to ad hoc deterministic codes, which find the design solution for each specific criteria, this strategy allows the problem to be solved with different objective functions using the same implementation. Furthermore, this code is extended to handle multiobjective problems through a modification of only the selection operator. An industrial example is provided to show the efficiency of the algorithm.Fil: Carnero, Mercedes del Carmen. Universidad Nacional de Río Cuarto. Facultad de Ingeniería; ArgentinaFil: Hernández, José. Universidad Nacional de Río Cuarto. Facultad de Ingeniería; ArgentinaFil: Sanchez, Mabel Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Bandoni, Jose Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaAmerican Chemical Society2001-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/38063Carnero, Mercedes del Carmen; Hernández, José; Sanchez, Mabel Cristina; Bandoni, Jose Alberto; An evolutionary approach for the design of nonredundant sensor networks; American Chemical Society; Industrial & Engineering Chemical Research; 40; 23; 11-2001; 5578-55840888-5885CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/ie000941kinfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/ie000941kinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:03:51Zoai:ri.conicet.gov.ar:11336/38063instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:03:51.262CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An evolutionary approach for the design of nonredundant sensor networks |
title |
An evolutionary approach for the design of nonredundant sensor networks |
spellingShingle |
An evolutionary approach for the design of nonredundant sensor networks Carnero, Mercedes del Carmen Sensor Networks Genetic Algorithms |
title_short |
An evolutionary approach for the design of nonredundant sensor networks |
title_full |
An evolutionary approach for the design of nonredundant sensor networks |
title_fullStr |
An evolutionary approach for the design of nonredundant sensor networks |
title_full_unstemmed |
An evolutionary approach for the design of nonredundant sensor networks |
title_sort |
An evolutionary approach for the design of nonredundant sensor networks |
dc.creator.none.fl_str_mv |
Carnero, Mercedes del Carmen Hernández, José Sanchez, Mabel Cristina Bandoni, Jose Alberto |
author |
Carnero, Mercedes del Carmen |
author_facet |
Carnero, Mercedes del Carmen Hernández, José Sanchez, Mabel Cristina Bandoni, Jose Alberto |
author_role |
author |
author2 |
Hernández, José Sanchez, Mabel Cristina Bandoni, Jose Alberto |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Sensor Networks Genetic Algorithms |
topic |
Sensor Networks Genetic Algorithms |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this work, solution strategies for the optimal design of nonredundant observable linear sensor networks are discussed. The Greedy algorithm allows the problem only to be tackled for a subset of optimization criteria. Particular deterministic techniques or general evolutionary strategies are necessary to solve the problem for more complex objective functions. In this context, a procedure based on the application of genetic algorithms (GAs) and linear algebra is presented. Ad hoc operators are designed for the crossover and mutation operations because the classic genetic operators perform poorly. In contrast to ad hoc deterministic codes, which find the design solution for each specific criteria, this strategy allows the problem to be solved with different objective functions using the same implementation. Furthermore, this code is extended to handle multiobjective problems through a modification of only the selection operator. An industrial example is provided to show the efficiency of the algorithm. Fil: Carnero, Mercedes del Carmen. Universidad Nacional de Río Cuarto. Facultad de Ingeniería; Argentina Fil: Hernández, José. Universidad Nacional de Río Cuarto. Facultad de Ingeniería; Argentina Fil: Sanchez, Mabel Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina Fil: Bandoni, Jose Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina |
description |
In this work, solution strategies for the optimal design of nonredundant observable linear sensor networks are discussed. The Greedy algorithm allows the problem only to be tackled for a subset of optimization criteria. Particular deterministic techniques or general evolutionary strategies are necessary to solve the problem for more complex objective functions. In this context, a procedure based on the application of genetic algorithms (GAs) and linear algebra is presented. Ad hoc operators are designed for the crossover and mutation operations because the classic genetic operators perform poorly. In contrast to ad hoc deterministic codes, which find the design solution for each specific criteria, this strategy allows the problem to be solved with different objective functions using the same implementation. Furthermore, this code is extended to handle multiobjective problems through a modification of only the selection operator. An industrial example is provided to show the efficiency of the algorithm. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/38063 Carnero, Mercedes del Carmen; Hernández, José; Sanchez, Mabel Cristina; Bandoni, Jose Alberto; An evolutionary approach for the design of nonredundant sensor networks; American Chemical Society; Industrial & Engineering Chemical Research; 40; 23; 11-2001; 5578-5584 0888-5885 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/38063 |
identifier_str_mv |
Carnero, Mercedes del Carmen; Hernández, José; Sanchez, Mabel Cristina; Bandoni, Jose Alberto; An evolutionary approach for the design of nonredundant sensor networks; American Chemical Society; Industrial & Engineering Chemical Research; 40; 23; 11-2001; 5578-5584 0888-5885 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1021/ie000941k info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/ie000941k |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980111303835648 |
score |
12.993085 |