Un enfoque práctico y flexible para la predicción de emergencia de malezas basado en redes neuronales artificiales

Autores
Chantre Balacca, Guillermo Ruben; Molinari, Franco Ariel; Renzi, Juan Pablo; Blanco, Anibal Manuel
Año de publicación
2018
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Los modelos más populares de predicción de emergencia de malezas a campo requieren de parámetros especie-específicos para modular la acumulación térmica/hidrotermal. Tales parámetros son con frecuencia desconocidos y difíciles de estimar. Dichos modelos dependen también de información microclimática sitio-específica, la cual es función de la heterogeneidad del suelo a nivel local y es por tanto difícil de medir y calcular. Por otra parte, la agricultura moderna cuenta con información fácilmente disponible en tiempo real, en particular datos meteorológicos generados en línea por estaciones meteorológicas ampliamente distribuidas en todo el territorio nacional. En este contexto, las Redes Neuronales Artificiales (RNA) proporcionan una opción flexible para el desarrollo de modelos predictivos, especialmente para especies que muestran patrones de emergencia distribuidos a lo largo del año. En este estudio se propone el desarrollo de RNA basado en información meteorológica básica (temperaturas mínimas/máximas y precipitación diaria) para predecir la emergencia de malezas a campo. La Emergencia Relativa Diaria (ERD), expresada como proporción de la emergencia total observada se utilizó como variable de salida de la red. Se utilizaron datos de emergencia a campo recolectados semanalmente para estimar los patrones ERD. Se presentan resultados para tres especies de la región Pampeana Semiárida Argentina (Lolium multiflorum, Avena fatua y Vicia villosa) las cuales muestran patrones irregulares y temporalmente distribuidos. En todos los casos la selección de la RNA se basó en la Raíz Cuadrada Media de Error (RCME) del conjunto de datos experimentales de entrenamiento, ya que mostró un mejor desempeño que otras métricas de información (AIC, BIC, NIC). La combinación de RNA con un gran número de neuronas entrenadas con un algoritmo de regularización bayesiano generó buenas predicciones de los patrones a campo.
Most popular emergence prediction models require species-specific parameters to modulate thermal/hydrothermal accumulation. Such parameters are frequently unknown and difficult to estimate. Moreover, such models also rely on site-specific microclimate conditions, which in turn depend on soil heterogeneity at a field spatial level, thus being difficult to measure and calculate. On the other hand, modern agriculture benefits from easily available real-time information, in particular on-line meteorological data generated by automatic local weather stations widely distributed around the country. In this context, Artificial Neural Networks (ANN) provide a flexible option for the development of prediction models, especially for species with highly distributed emergence pattern along the year. In this work, an ANN approach based on basic meteorological data (daily minimum/maximum temperatures and precipitation) is proposed for weed emergence prediction. Relative Daily Emergence (RDE), expressed as a proportion of the total emergence, was the adopted output variable of the ANN. Field emergence data recorded on a weekly basis were used to generate RDE patterns. Results for three species from the Semiarid Pampean Region of Argentina (Lolium multiflorum, Avena fatua and Vicia villosa) which show irregular and time-distributed field emergence patterns are reported. In all cases, ANN model selection was based on the Root Mean Square Error (RMSE) of the training data, which showed better performance than other information metrics (AIC, BIC, NIC). The combination of large ANN trained with a bayesian regularization algorithm generated satisfactory predictions of the field emergence patterns.
Fil: Chantre Balacca, Guillermo Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; Argentina
Fil: Molinari, Franco Ariel. Universidad Nacional del Sur. Departamento de Agronomía; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina
Fil: Renzi, Juan Pablo. Instituto Nacional de Tecnología Agropecuaria; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; Argentina
Fil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
II Congreso Argentino de Malezas: Ciencia, producción y sociedad: hacia un manejo sustentable
Rosario
Argentina
Asociación Argentina de Ciencia de las Malezas
Materia
MODELOS PREDICTIVOS DE EMERGENCIA
INTELIGENCIA ARTIFICIAL
LOLMU
AVEFA
VICVI
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/264470

id CONICETDig_802be89f968988a2859b23f85b33e24d
oai_identifier_str oai:ri.conicet.gov.ar:11336/264470
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Un enfoque práctico y flexible para la predicción de emergencia de malezas basado en redes neuronales artificialesChantre Balacca, Guillermo RubenMolinari, Franco ArielRenzi, Juan PabloBlanco, Anibal ManuelMODELOS PREDICTIVOS DE EMERGENCIAINTELIGENCIA ARTIFICIALLOLMUAVEFAVICVIhttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Los modelos más populares de predicción de emergencia de malezas a campo requieren de parámetros especie-específicos para modular la acumulación térmica/hidrotermal. Tales parámetros son con frecuencia desconocidos y difíciles de estimar. Dichos modelos dependen también de información microclimática sitio-específica, la cual es función de la heterogeneidad del suelo a nivel local y es por tanto difícil de medir y calcular. Por otra parte, la agricultura moderna cuenta con información fácilmente disponible en tiempo real, en particular datos meteorológicos generados en línea por estaciones meteorológicas ampliamente distribuidas en todo el territorio nacional. En este contexto, las Redes Neuronales Artificiales (RNA) proporcionan una opción flexible para el desarrollo de modelos predictivos, especialmente para especies que muestran patrones de emergencia distribuidos a lo largo del año. En este estudio se propone el desarrollo de RNA basado en información meteorológica básica (temperaturas mínimas/máximas y precipitación diaria) para predecir la emergencia de malezas a campo. La Emergencia Relativa Diaria (ERD), expresada como proporción de la emergencia total observada se utilizó como variable de salida de la red. Se utilizaron datos de emergencia a campo recolectados semanalmente para estimar los patrones ERD. Se presentan resultados para tres especies de la región Pampeana Semiárida Argentina (Lolium multiflorum, Avena fatua y Vicia villosa) las cuales muestran patrones irregulares y temporalmente distribuidos. En todos los casos la selección de la RNA se basó en la Raíz Cuadrada Media de Error (RCME) del conjunto de datos experimentales de entrenamiento, ya que mostró un mejor desempeño que otras métricas de información (AIC, BIC, NIC). La combinación de RNA con un gran número de neuronas entrenadas con un algoritmo de regularización bayesiano generó buenas predicciones de los patrones a campo.Most popular emergence prediction models require species-specific parameters to modulate thermal/hydrothermal accumulation. Such parameters are frequently unknown and difficult to estimate. Moreover, such models also rely on site-specific microclimate conditions, which in turn depend on soil heterogeneity at a field spatial level, thus being difficult to measure and calculate. On the other hand, modern agriculture benefits from easily available real-time information, in particular on-line meteorological data generated by automatic local weather stations widely distributed around the country. In this context, Artificial Neural Networks (ANN) provide a flexible option for the development of prediction models, especially for species with highly distributed emergence pattern along the year. In this work, an ANN approach based on basic meteorological data (daily minimum/maximum temperatures and precipitation) is proposed for weed emergence prediction. Relative Daily Emergence (RDE), expressed as a proportion of the total emergence, was the adopted output variable of the ANN. Field emergence data recorded on a weekly basis were used to generate RDE patterns. Results for three species from the Semiarid Pampean Region of Argentina (Lolium multiflorum, Avena fatua and Vicia villosa) which show irregular and time-distributed field emergence patterns are reported. In all cases, ANN model selection was based on the Root Mean Square Error (RMSE) of the training data, which showed better performance than other information metrics (AIC, BIC, NIC). The combination of large ANN trained with a bayesian regularization algorithm generated satisfactory predictions of the field emergence patterns.Fil: Chantre Balacca, Guillermo Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; ArgentinaFil: Molinari, Franco Ariel. Universidad Nacional del Sur. Departamento de Agronomía; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; ArgentinaFil: Renzi, Juan Pablo. Instituto Nacional de Tecnología Agropecuaria; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; ArgentinaFil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaII Congreso Argentino de Malezas: Ciencia, producción y sociedad: hacia un manejo sustentableRosarioArgentinaAsociación Argentina de Ciencia de las MalezasAsociación Argentina de Ciencias de las Malezas2018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/264470Un enfoque práctico y flexible para la predicción de emergencia de malezas basado en redes neuronales artificiales; II Congreso Argentino de Malezas: Ciencia, producción y sociedad: hacia un manejo sustentable; Rosario; Argentina; 2018; 151-151CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/https://www.asacim.org.ar/wp-content/uploads/2019/10/Argentina-2018.pdfNacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:47Zoai:ri.conicet.gov.ar:11336/264470instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:48.215CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Un enfoque práctico y flexible para la predicción de emergencia de malezas basado en redes neuronales artificiales
title Un enfoque práctico y flexible para la predicción de emergencia de malezas basado en redes neuronales artificiales
spellingShingle Un enfoque práctico y flexible para la predicción de emergencia de malezas basado en redes neuronales artificiales
Chantre Balacca, Guillermo Ruben
MODELOS PREDICTIVOS DE EMERGENCIA
INTELIGENCIA ARTIFICIAL
LOLMU
AVEFA
VICVI
title_short Un enfoque práctico y flexible para la predicción de emergencia de malezas basado en redes neuronales artificiales
title_full Un enfoque práctico y flexible para la predicción de emergencia de malezas basado en redes neuronales artificiales
title_fullStr Un enfoque práctico y flexible para la predicción de emergencia de malezas basado en redes neuronales artificiales
title_full_unstemmed Un enfoque práctico y flexible para la predicción de emergencia de malezas basado en redes neuronales artificiales
title_sort Un enfoque práctico y flexible para la predicción de emergencia de malezas basado en redes neuronales artificiales
dc.creator.none.fl_str_mv Chantre Balacca, Guillermo Ruben
Molinari, Franco Ariel
Renzi, Juan Pablo
Blanco, Anibal Manuel
author Chantre Balacca, Guillermo Ruben
author_facet Chantre Balacca, Guillermo Ruben
Molinari, Franco Ariel
Renzi, Juan Pablo
Blanco, Anibal Manuel
author_role author
author2 Molinari, Franco Ariel
Renzi, Juan Pablo
Blanco, Anibal Manuel
author2_role author
author
author
dc.subject.none.fl_str_mv MODELOS PREDICTIVOS DE EMERGENCIA
INTELIGENCIA ARTIFICIAL
LOLMU
AVEFA
VICVI
topic MODELOS PREDICTIVOS DE EMERGENCIA
INTELIGENCIA ARTIFICIAL
LOLMU
AVEFA
VICVI
purl_subject.fl_str_mv https://purl.org/becyt/ford/4.1
https://purl.org/becyt/ford/4
https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Los modelos más populares de predicción de emergencia de malezas a campo requieren de parámetros especie-específicos para modular la acumulación térmica/hidrotermal. Tales parámetros son con frecuencia desconocidos y difíciles de estimar. Dichos modelos dependen también de información microclimática sitio-específica, la cual es función de la heterogeneidad del suelo a nivel local y es por tanto difícil de medir y calcular. Por otra parte, la agricultura moderna cuenta con información fácilmente disponible en tiempo real, en particular datos meteorológicos generados en línea por estaciones meteorológicas ampliamente distribuidas en todo el territorio nacional. En este contexto, las Redes Neuronales Artificiales (RNA) proporcionan una opción flexible para el desarrollo de modelos predictivos, especialmente para especies que muestran patrones de emergencia distribuidos a lo largo del año. En este estudio se propone el desarrollo de RNA basado en información meteorológica básica (temperaturas mínimas/máximas y precipitación diaria) para predecir la emergencia de malezas a campo. La Emergencia Relativa Diaria (ERD), expresada como proporción de la emergencia total observada se utilizó como variable de salida de la red. Se utilizaron datos de emergencia a campo recolectados semanalmente para estimar los patrones ERD. Se presentan resultados para tres especies de la región Pampeana Semiárida Argentina (Lolium multiflorum, Avena fatua y Vicia villosa) las cuales muestran patrones irregulares y temporalmente distribuidos. En todos los casos la selección de la RNA se basó en la Raíz Cuadrada Media de Error (RCME) del conjunto de datos experimentales de entrenamiento, ya que mostró un mejor desempeño que otras métricas de información (AIC, BIC, NIC). La combinación de RNA con un gran número de neuronas entrenadas con un algoritmo de regularización bayesiano generó buenas predicciones de los patrones a campo.
Most popular emergence prediction models require species-specific parameters to modulate thermal/hydrothermal accumulation. Such parameters are frequently unknown and difficult to estimate. Moreover, such models also rely on site-specific microclimate conditions, which in turn depend on soil heterogeneity at a field spatial level, thus being difficult to measure and calculate. On the other hand, modern agriculture benefits from easily available real-time information, in particular on-line meteorological data generated by automatic local weather stations widely distributed around the country. In this context, Artificial Neural Networks (ANN) provide a flexible option for the development of prediction models, especially for species with highly distributed emergence pattern along the year. In this work, an ANN approach based on basic meteorological data (daily minimum/maximum temperatures and precipitation) is proposed for weed emergence prediction. Relative Daily Emergence (RDE), expressed as a proportion of the total emergence, was the adopted output variable of the ANN. Field emergence data recorded on a weekly basis were used to generate RDE patterns. Results for three species from the Semiarid Pampean Region of Argentina (Lolium multiflorum, Avena fatua and Vicia villosa) which show irregular and time-distributed field emergence patterns are reported. In all cases, ANN model selection was based on the Root Mean Square Error (RMSE) of the training data, which showed better performance than other information metrics (AIC, BIC, NIC). The combination of large ANN trained with a bayesian regularization algorithm generated satisfactory predictions of the field emergence patterns.
Fil: Chantre Balacca, Guillermo Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; Argentina
Fil: Molinari, Franco Ariel. Universidad Nacional del Sur. Departamento de Agronomía; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina
Fil: Renzi, Juan Pablo. Instituto Nacional de Tecnología Agropecuaria; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; Argentina
Fil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
II Congreso Argentino de Malezas: Ciencia, producción y sociedad: hacia un manejo sustentable
Rosario
Argentina
Asociación Argentina de Ciencia de las Malezas
description Los modelos más populares de predicción de emergencia de malezas a campo requieren de parámetros especie-específicos para modular la acumulación térmica/hidrotermal. Tales parámetros son con frecuencia desconocidos y difíciles de estimar. Dichos modelos dependen también de información microclimática sitio-específica, la cual es función de la heterogeneidad del suelo a nivel local y es por tanto difícil de medir y calcular. Por otra parte, la agricultura moderna cuenta con información fácilmente disponible en tiempo real, en particular datos meteorológicos generados en línea por estaciones meteorológicas ampliamente distribuidas en todo el territorio nacional. En este contexto, las Redes Neuronales Artificiales (RNA) proporcionan una opción flexible para el desarrollo de modelos predictivos, especialmente para especies que muestran patrones de emergencia distribuidos a lo largo del año. En este estudio se propone el desarrollo de RNA basado en información meteorológica básica (temperaturas mínimas/máximas y precipitación diaria) para predecir la emergencia de malezas a campo. La Emergencia Relativa Diaria (ERD), expresada como proporción de la emergencia total observada se utilizó como variable de salida de la red. Se utilizaron datos de emergencia a campo recolectados semanalmente para estimar los patrones ERD. Se presentan resultados para tres especies de la región Pampeana Semiárida Argentina (Lolium multiflorum, Avena fatua y Vicia villosa) las cuales muestran patrones irregulares y temporalmente distribuidos. En todos los casos la selección de la RNA se basó en la Raíz Cuadrada Media de Error (RCME) del conjunto de datos experimentales de entrenamiento, ya que mostró un mejor desempeño que otras métricas de información (AIC, BIC, NIC). La combinación de RNA con un gran número de neuronas entrenadas con un algoritmo de regularización bayesiano generó buenas predicciones de los patrones a campo.
publishDate 2018
dc.date.none.fl_str_mv 2018
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Congreso
Book
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/264470
Un enfoque práctico y flexible para la predicción de emergencia de malezas basado en redes neuronales artificiales; II Congreso Argentino de Malezas: Ciencia, producción y sociedad: hacia un manejo sustentable; Rosario; Argentina; 2018; 151-151
CONICET Digital
CONICET
url http://hdl.handle.net/11336/264470
identifier_str_mv Un enfoque práctico y flexible para la predicción de emergencia de malezas basado en redes neuronales artificiales; II Congreso Argentino de Malezas: Ciencia, producción y sociedad: hacia un manejo sustentable; Rosario; Argentina; 2018; 151-151
CONICET Digital
CONICET
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.asacim.org.ar/wp-content/uploads/2019/10/Argentina-2018.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.coverage.none.fl_str_mv Nacional
dc.publisher.none.fl_str_mv Asociación Argentina de Ciencias de las Malezas
publisher.none.fl_str_mv Asociación Argentina de Ciencias de las Malezas
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613118202740736
score 13.070432