A flexible and practical approach for real-time weed emergence prediction based on Artificial Neural Networks
- Autores
- Chantre Balacca, Guillermo Ruben; Vigna, Mario Raul; Renzi Pugni, Juan Pablo; Blanco, Anibal Manuel
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Most popular emergence prediction models require species-specific population-based parameters to modulate thermal/hydrothermal accumulation. Such parameters are frequently unknown and difficult to estimate. Moreover, such models also rely on hardly available and difficult to estimate soil site-specific microclimate conditions, which in turn depend on soil heterogeneity at a field spatial level. On the other hand, modern agriculture benefits from easily available real-time information, in particular on-line meteorological data generated by forecasts and automatic local weather stations. In this context, Artificial Neural Networks (ANN) provide a flexible option for the development of prediction models, especially to study species which show a highly distributed emergence pattern along the year. In this work, an ANN approach based on easily obtainable meteorological data (daily minimum and maximum temperatures; daily precipitation) is proposed for weed emergence prediction. Relative Daily Emergence (RDE), expressed as a proportion of the total emergence, was the adopted output variable. Field emergence data recorded on a weekly basis were used to generate RDE patterns through linear interpolation. Results for three study cases from the Semiarid Pampean Region of Argentina (Lolium multiflorum, Avena fatua and Vicia villosa), which show irregular and time-distributed field emergence patterns, are reported. In all cases, ANN model selection was based on the Root Mean Square Error of the test set which showed better consistency than other typical Information Theory performance metrics. The combination of large ANN with a Bayesian Regularization Algorithm generated satisfactory estimations based on the RMSE values for independent Cumulative Emergence data.
EEA Bordenave
EEA Hilario Ascasubi
Fil: Chantre Balacca, Guillermo Ruben. Universidad Nacional del Sur. Departamento de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiarida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiarida; Argentina
Fil: Vigna, Mario Raúl. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bordenave; Argentina
Fil: Renzi Pugni, Juan Pablo. Universidad Nacional del Sur. Departamento de Agronomía; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina.
Fil: Blanco, Aníbal M. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina - Fuente
- Biosystems engineering 170 : 51-60. (June 2018)
- Materia
-
Malezas
Emergencia
Modelos
Inteligencia Artificial
Weeds
Emergence
Models
Artificial Intelligence
Redes Neuronales Artificiales
Modelos de Predicción - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/2333
Ver los metadatos del registro completo
id |
INTADig_4e29ce9a1b2e2424f2a5a6e717bd1868 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/2333 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
A flexible and practical approach for real-time weed emergence prediction based on Artificial Neural NetworksChantre Balacca, Guillermo RubenVigna, Mario RaulRenzi Pugni, Juan PabloBlanco, Anibal ManuelMalezasEmergenciaModelosInteligencia ArtificialWeedsEmergenceModelsArtificial IntelligenceRedes Neuronales ArtificialesModelos de PredicciónMost popular emergence prediction models require species-specific population-based parameters to modulate thermal/hydrothermal accumulation. Such parameters are frequently unknown and difficult to estimate. Moreover, such models also rely on hardly available and difficult to estimate soil site-specific microclimate conditions, which in turn depend on soil heterogeneity at a field spatial level. On the other hand, modern agriculture benefits from easily available real-time information, in particular on-line meteorological data generated by forecasts and automatic local weather stations. In this context, Artificial Neural Networks (ANN) provide a flexible option for the development of prediction models, especially to study species which show a highly distributed emergence pattern along the year. In this work, an ANN approach based on easily obtainable meteorological data (daily minimum and maximum temperatures; daily precipitation) is proposed for weed emergence prediction. Relative Daily Emergence (RDE), expressed as a proportion of the total emergence, was the adopted output variable. Field emergence data recorded on a weekly basis were used to generate RDE patterns through linear interpolation. Results for three study cases from the Semiarid Pampean Region of Argentina (Lolium multiflorum, Avena fatua and Vicia villosa), which show irregular and time-distributed field emergence patterns, are reported. In all cases, ANN model selection was based on the Root Mean Square Error of the test set which showed better consistency than other typical Information Theory performance metrics. The combination of large ANN with a Bayesian Regularization Algorithm generated satisfactory estimations based on the RMSE values for independent Cumulative Emergence data.EEA BordenaveEEA Hilario AscasubiFil: Chantre Balacca, Guillermo Ruben. Universidad Nacional del Sur. Departamento de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiarida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiarida; ArgentinaFil: Vigna, Mario Raúl. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bordenave; ArgentinaFil: Renzi Pugni, Juan Pablo. Universidad Nacional del Sur. Departamento de Agronomía; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina.Fil: Blanco, Aníbal M. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina2018-05-04T18:33:39Z2018-05-04T18:33:39Z2018-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://www.sciencedirect.com/science/article/pii/S1537511017306335http://hdl.handle.net/20.500.12123/23331537-5110https://doi.org/10.1016/j.biosystemseng.2018.03.014Biosystems engineering 170 : 51-60. (June 2018)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccess2025-09-29T13:44:18Zoai:localhost:20.500.12123/2333instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:44:18.388INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
A flexible and practical approach for real-time weed emergence prediction based on Artificial Neural Networks |
title |
A flexible and practical approach for real-time weed emergence prediction based on Artificial Neural Networks |
spellingShingle |
A flexible and practical approach for real-time weed emergence prediction based on Artificial Neural Networks Chantre Balacca, Guillermo Ruben Malezas Emergencia Modelos Inteligencia Artificial Weeds Emergence Models Artificial Intelligence Redes Neuronales Artificiales Modelos de Predicción |
title_short |
A flexible and practical approach for real-time weed emergence prediction based on Artificial Neural Networks |
title_full |
A flexible and practical approach for real-time weed emergence prediction based on Artificial Neural Networks |
title_fullStr |
A flexible and practical approach for real-time weed emergence prediction based on Artificial Neural Networks |
title_full_unstemmed |
A flexible and practical approach for real-time weed emergence prediction based on Artificial Neural Networks |
title_sort |
A flexible and practical approach for real-time weed emergence prediction based on Artificial Neural Networks |
dc.creator.none.fl_str_mv |
Chantre Balacca, Guillermo Ruben Vigna, Mario Raul Renzi Pugni, Juan Pablo Blanco, Anibal Manuel |
author |
Chantre Balacca, Guillermo Ruben |
author_facet |
Chantre Balacca, Guillermo Ruben Vigna, Mario Raul Renzi Pugni, Juan Pablo Blanco, Anibal Manuel |
author_role |
author |
author2 |
Vigna, Mario Raul Renzi Pugni, Juan Pablo Blanco, Anibal Manuel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Malezas Emergencia Modelos Inteligencia Artificial Weeds Emergence Models Artificial Intelligence Redes Neuronales Artificiales Modelos de Predicción |
topic |
Malezas Emergencia Modelos Inteligencia Artificial Weeds Emergence Models Artificial Intelligence Redes Neuronales Artificiales Modelos de Predicción |
dc.description.none.fl_txt_mv |
Most popular emergence prediction models require species-specific population-based parameters to modulate thermal/hydrothermal accumulation. Such parameters are frequently unknown and difficult to estimate. Moreover, such models also rely on hardly available and difficult to estimate soil site-specific microclimate conditions, which in turn depend on soil heterogeneity at a field spatial level. On the other hand, modern agriculture benefits from easily available real-time information, in particular on-line meteorological data generated by forecasts and automatic local weather stations. In this context, Artificial Neural Networks (ANN) provide a flexible option for the development of prediction models, especially to study species which show a highly distributed emergence pattern along the year. In this work, an ANN approach based on easily obtainable meteorological data (daily minimum and maximum temperatures; daily precipitation) is proposed for weed emergence prediction. Relative Daily Emergence (RDE), expressed as a proportion of the total emergence, was the adopted output variable. Field emergence data recorded on a weekly basis were used to generate RDE patterns through linear interpolation. Results for three study cases from the Semiarid Pampean Region of Argentina (Lolium multiflorum, Avena fatua and Vicia villosa), which show irregular and time-distributed field emergence patterns, are reported. In all cases, ANN model selection was based on the Root Mean Square Error of the test set which showed better consistency than other typical Information Theory performance metrics. The combination of large ANN with a Bayesian Regularization Algorithm generated satisfactory estimations based on the RMSE values for independent Cumulative Emergence data. EEA Bordenave EEA Hilario Ascasubi Fil: Chantre Balacca, Guillermo Ruben. Universidad Nacional del Sur. Departamento de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiarida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiarida; Argentina Fil: Vigna, Mario Raúl. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bordenave; Argentina Fil: Renzi Pugni, Juan Pablo. Universidad Nacional del Sur. Departamento de Agronomía; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina. Fil: Blanco, Aníbal M. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina |
description |
Most popular emergence prediction models require species-specific population-based parameters to modulate thermal/hydrothermal accumulation. Such parameters are frequently unknown and difficult to estimate. Moreover, such models also rely on hardly available and difficult to estimate soil site-specific microclimate conditions, which in turn depend on soil heterogeneity at a field spatial level. On the other hand, modern agriculture benefits from easily available real-time information, in particular on-line meteorological data generated by forecasts and automatic local weather stations. In this context, Artificial Neural Networks (ANN) provide a flexible option for the development of prediction models, especially to study species which show a highly distributed emergence pattern along the year. In this work, an ANN approach based on easily obtainable meteorological data (daily minimum and maximum temperatures; daily precipitation) is proposed for weed emergence prediction. Relative Daily Emergence (RDE), expressed as a proportion of the total emergence, was the adopted output variable. Field emergence data recorded on a weekly basis were used to generate RDE patterns through linear interpolation. Results for three study cases from the Semiarid Pampean Region of Argentina (Lolium multiflorum, Avena fatua and Vicia villosa), which show irregular and time-distributed field emergence patterns, are reported. In all cases, ANN model selection was based on the Root Mean Square Error of the test set which showed better consistency than other typical Information Theory performance metrics. The combination of large ANN with a Bayesian Regularization Algorithm generated satisfactory estimations based on the RMSE values for independent Cumulative Emergence data. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-05-04T18:33:39Z 2018-05-04T18:33:39Z 2018-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S1537511017306335 http://hdl.handle.net/20.500.12123/2333 1537-5110 https://doi.org/10.1016/j.biosystemseng.2018.03.014 |
url |
https://www.sciencedirect.com/science/article/pii/S1537511017306335 http://hdl.handle.net/20.500.12123/2333 https://doi.org/10.1016/j.biosystemseng.2018.03.014 |
identifier_str_mv |
1537-5110 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
eu_rights_str_mv |
restrictedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Biosystems engineering 170 : 51-60. (June 2018) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1844619121683070976 |
score |
12.559606 |