A flexible and practical approach for real-time weed emergence prediction based on Artificial Neural Networks

Autores
Chantre Balacca, Guillermo Ruben; Vigna, Mario Raul; Renzi Pugni, Juan Pablo; Blanco, Anibal Manuel
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Most popular emergence prediction models require species-specific population-based parameters to modulate thermal/hydrothermal accumulation. Such parameters are frequently unknown and difficult to estimate. Moreover, such models also rely on hardly available and difficult to estimate soil site-specific microclimate conditions, which in turn depend on soil heterogeneity at a field spatial level. On the other hand, modern agriculture benefits from easily available real-time information, in particular on-line meteorological data generated by forecasts and automatic local weather stations. In this context, Artificial Neural Networks (ANN) provide a flexible option for the development of prediction models, especially to study species which show a highly distributed emergence pattern along the year. In this work, an ANN approach based on easily obtainable meteorological data (daily minimum and maximum temperatures; daily precipitation) is proposed for weed emergence prediction. Relative Daily Emergence (RDE), expressed as a proportion of the total emergence, was the adopted output variable. Field emergence data recorded on a weekly basis were used to generate RDE patterns through linear interpolation. Results for three study cases from the Semiarid Pampean Region of Argentina (Lolium multiflorum, Avena fatua and Vicia villosa), which show irregular and time-distributed field emergence patterns, are reported. In all cases, ANN model selection was based on the Root Mean Square Error of the test set which showed better consistency than other typical Information Theory performance metrics. The combination of large ANN with a Bayesian Regularization Algorithm generated satisfactory estimations based on the RMSE values for independent Cumulative Emergence data.
EEA Bordenave
EEA Hilario Ascasubi
Fil: Chantre Balacca, Guillermo Ruben. Universidad Nacional del Sur. Departamento de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiarida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiarida; Argentina
Fil: Vigna, Mario Raúl. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bordenave; Argentina
Fil: Renzi Pugni, Juan Pablo. Universidad Nacional del Sur. Departamento de Agronomía; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina.
Fil: Blanco, Aníbal M. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fuente
Biosystems engineering 170 : 51-60. (June 2018)
Materia
Malezas
Emergencia
Modelos
Inteligencia Artificial
Weeds
Emergence
Models
Artificial Intelligence
Redes Neuronales Artificiales
Modelos de Predicción
Nivel de accesibilidad
acceso restringido
Condiciones de uso
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/2333

id INTADig_4e29ce9a1b2e2424f2a5a6e717bd1868
oai_identifier_str oai:localhost:20.500.12123/2333
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling A flexible and practical approach for real-time weed emergence prediction based on Artificial Neural NetworksChantre Balacca, Guillermo RubenVigna, Mario RaulRenzi Pugni, Juan PabloBlanco, Anibal ManuelMalezasEmergenciaModelosInteligencia ArtificialWeedsEmergenceModelsArtificial IntelligenceRedes Neuronales ArtificialesModelos de PredicciónMost popular emergence prediction models require species-specific population-based parameters to modulate thermal/hydrothermal accumulation. Such parameters are frequently unknown and difficult to estimate. Moreover, such models also rely on hardly available and difficult to estimate soil site-specific microclimate conditions, which in turn depend on soil heterogeneity at a field spatial level. On the other hand, modern agriculture benefits from easily available real-time information, in particular on-line meteorological data generated by forecasts and automatic local weather stations. In this context, Artificial Neural Networks (ANN) provide a flexible option for the development of prediction models, especially to study species which show a highly distributed emergence pattern along the year. In this work, an ANN approach based on easily obtainable meteorological data (daily minimum and maximum temperatures; daily precipitation) is proposed for weed emergence prediction. Relative Daily Emergence (RDE), expressed as a proportion of the total emergence, was the adopted output variable. Field emergence data recorded on a weekly basis were used to generate RDE patterns through linear interpolation. Results for three study cases from the Semiarid Pampean Region of Argentina (Lolium multiflorum, Avena fatua and Vicia villosa), which show irregular and time-distributed field emergence patterns, are reported. In all cases, ANN model selection was based on the Root Mean Square Error of the test set which showed better consistency than other typical Information Theory performance metrics. The combination of large ANN with a Bayesian Regularization Algorithm generated satisfactory estimations based on the RMSE values for independent Cumulative Emergence data.EEA BordenaveEEA Hilario AscasubiFil: Chantre Balacca, Guillermo Ruben. Universidad Nacional del Sur. Departamento de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiarida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiarida; ArgentinaFil: Vigna, Mario Raúl. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bordenave; ArgentinaFil: Renzi Pugni, Juan Pablo. Universidad Nacional del Sur. Departamento de Agronomía; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina.Fil: Blanco, Aníbal M. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina2018-05-04T18:33:39Z2018-05-04T18:33:39Z2018-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://www.sciencedirect.com/science/article/pii/S1537511017306335http://hdl.handle.net/20.500.12123/23331537-5110https://doi.org/10.1016/j.biosystemseng.2018.03.014Biosystems engineering 170 : 51-60. (June 2018)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccess2025-09-29T13:44:18Zoai:localhost:20.500.12123/2333instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:44:18.388INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv A flexible and practical approach for real-time weed emergence prediction based on Artificial Neural Networks
title A flexible and practical approach for real-time weed emergence prediction based on Artificial Neural Networks
spellingShingle A flexible and practical approach for real-time weed emergence prediction based on Artificial Neural Networks
Chantre Balacca, Guillermo Ruben
Malezas
Emergencia
Modelos
Inteligencia Artificial
Weeds
Emergence
Models
Artificial Intelligence
Redes Neuronales Artificiales
Modelos de Predicción
title_short A flexible and practical approach for real-time weed emergence prediction based on Artificial Neural Networks
title_full A flexible and practical approach for real-time weed emergence prediction based on Artificial Neural Networks
title_fullStr A flexible and practical approach for real-time weed emergence prediction based on Artificial Neural Networks
title_full_unstemmed A flexible and practical approach for real-time weed emergence prediction based on Artificial Neural Networks
title_sort A flexible and practical approach for real-time weed emergence prediction based on Artificial Neural Networks
dc.creator.none.fl_str_mv Chantre Balacca, Guillermo Ruben
Vigna, Mario Raul
Renzi Pugni, Juan Pablo
Blanco, Anibal Manuel
author Chantre Balacca, Guillermo Ruben
author_facet Chantre Balacca, Guillermo Ruben
Vigna, Mario Raul
Renzi Pugni, Juan Pablo
Blanco, Anibal Manuel
author_role author
author2 Vigna, Mario Raul
Renzi Pugni, Juan Pablo
Blanco, Anibal Manuel
author2_role author
author
author
dc.subject.none.fl_str_mv Malezas
Emergencia
Modelos
Inteligencia Artificial
Weeds
Emergence
Models
Artificial Intelligence
Redes Neuronales Artificiales
Modelos de Predicción
topic Malezas
Emergencia
Modelos
Inteligencia Artificial
Weeds
Emergence
Models
Artificial Intelligence
Redes Neuronales Artificiales
Modelos de Predicción
dc.description.none.fl_txt_mv Most popular emergence prediction models require species-specific population-based parameters to modulate thermal/hydrothermal accumulation. Such parameters are frequently unknown and difficult to estimate. Moreover, such models also rely on hardly available and difficult to estimate soil site-specific microclimate conditions, which in turn depend on soil heterogeneity at a field spatial level. On the other hand, modern agriculture benefits from easily available real-time information, in particular on-line meteorological data generated by forecasts and automatic local weather stations. In this context, Artificial Neural Networks (ANN) provide a flexible option for the development of prediction models, especially to study species which show a highly distributed emergence pattern along the year. In this work, an ANN approach based on easily obtainable meteorological data (daily minimum and maximum temperatures; daily precipitation) is proposed for weed emergence prediction. Relative Daily Emergence (RDE), expressed as a proportion of the total emergence, was the adopted output variable. Field emergence data recorded on a weekly basis were used to generate RDE patterns through linear interpolation. Results for three study cases from the Semiarid Pampean Region of Argentina (Lolium multiflorum, Avena fatua and Vicia villosa), which show irregular and time-distributed field emergence patterns, are reported. In all cases, ANN model selection was based on the Root Mean Square Error of the test set which showed better consistency than other typical Information Theory performance metrics. The combination of large ANN with a Bayesian Regularization Algorithm generated satisfactory estimations based on the RMSE values for independent Cumulative Emergence data.
EEA Bordenave
EEA Hilario Ascasubi
Fil: Chantre Balacca, Guillermo Ruben. Universidad Nacional del Sur. Departamento de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiarida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiarida; Argentina
Fil: Vigna, Mario Raúl. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bordenave; Argentina
Fil: Renzi Pugni, Juan Pablo. Universidad Nacional del Sur. Departamento de Agronomía; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina.
Fil: Blanco, Aníbal M. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
description Most popular emergence prediction models require species-specific population-based parameters to modulate thermal/hydrothermal accumulation. Such parameters are frequently unknown and difficult to estimate. Moreover, such models also rely on hardly available and difficult to estimate soil site-specific microclimate conditions, which in turn depend on soil heterogeneity at a field spatial level. On the other hand, modern agriculture benefits from easily available real-time information, in particular on-line meteorological data generated by forecasts and automatic local weather stations. In this context, Artificial Neural Networks (ANN) provide a flexible option for the development of prediction models, especially to study species which show a highly distributed emergence pattern along the year. In this work, an ANN approach based on easily obtainable meteorological data (daily minimum and maximum temperatures; daily precipitation) is proposed for weed emergence prediction. Relative Daily Emergence (RDE), expressed as a proportion of the total emergence, was the adopted output variable. Field emergence data recorded on a weekly basis were used to generate RDE patterns through linear interpolation. Results for three study cases from the Semiarid Pampean Region of Argentina (Lolium multiflorum, Avena fatua and Vicia villosa), which show irregular and time-distributed field emergence patterns, are reported. In all cases, ANN model selection was based on the Root Mean Square Error of the test set which showed better consistency than other typical Information Theory performance metrics. The combination of large ANN with a Bayesian Regularization Algorithm generated satisfactory estimations based on the RMSE values for independent Cumulative Emergence data.
publishDate 2018
dc.date.none.fl_str_mv 2018-05-04T18:33:39Z
2018-05-04T18:33:39Z
2018-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S1537511017306335
http://hdl.handle.net/20.500.12123/2333
1537-5110
https://doi.org/10.1016/j.biosystemseng.2018.03.014
url https://www.sciencedirect.com/science/article/pii/S1537511017306335
http://hdl.handle.net/20.500.12123/2333
https://doi.org/10.1016/j.biosystemseng.2018.03.014
identifier_str_mv 1537-5110
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
eu_rights_str_mv restrictedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Biosystems engineering 170 : 51-60. (June 2018)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1844619121683070976
score 12.559606