Monadic MV-algebras II: Monadic implicational subreducts
- Autores
- Cimadamore, Cecilia Rossana; Díaz Varela, José Patricio
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we study the class of all monadic implicational subreducts, that is, the {→, ∀, 1}-subreducts of the class of monadic MV-algebras. We prove that this class is an equational class, which we denote by ML, and we give an equational basis for this variety. An algebra in ML is called a monadic Lukasiewicz implication algebra. We characterize the subdirectly irreducible members of ML and the congruences of every monadic Lukasiewicz implication algebra by monadic filters. We prove that ML is generated by its finite members. Finally, we completely describe the lattice of subvarieties, and we give an equational basis for each proper subvariety.
Fil: Cimadamore, Cecilia Rossana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Díaz Varela, José Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina - Materia
-
Monadic Mv-Algebras
Monadic Implicationa Subreducts
Lukasiewicz Implication Algebras
Subvarieties
Equational Bases - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/29828
Ver los metadatos del registro completo
| id |
CONICETDig_7f3631f97ac4d3e6a7b089aed9f8b298 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/29828 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Monadic MV-algebras II: Monadic implicational subreductsCimadamore, Cecilia RossanaDíaz Varela, José PatricioMonadic Mv-AlgebrasMonadic Implicationa SubreductsLukasiewicz Implication AlgebrasSubvarietiesEquational Baseshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we study the class of all monadic implicational subreducts, that is, the {→, ∀, 1}-subreducts of the class of monadic MV-algebras. We prove that this class is an equational class, which we denote by ML, and we give an equational basis for this variety. An algebra in ML is called a monadic Lukasiewicz implication algebra. We characterize the subdirectly irreducible members of ML and the congruences of every monadic Lukasiewicz implication algebra by monadic filters. We prove that ML is generated by its finite members. Finally, we completely describe the lattice of subvarieties, and we give an equational basis for each proper subvariety.Fil: Cimadamore, Cecilia Rossana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Díaz Varela, José Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaSpringer2014-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/29828Cimadamore, Cecilia Rossana; Díaz Varela, José Patricio; Monadic MV-algebras II: Monadic implicational subreducts; Springer; Algebra Universalis; 71; 3; 3-2014; 201-2190002-52401420-8911CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00012-014-0277-0info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00012-014-0277-0info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:47:01Zoai:ri.conicet.gov.ar:11336/29828instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:47:02.102CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Monadic MV-algebras II: Monadic implicational subreducts |
| title |
Monadic MV-algebras II: Monadic implicational subreducts |
| spellingShingle |
Monadic MV-algebras II: Monadic implicational subreducts Cimadamore, Cecilia Rossana Monadic Mv-Algebras Monadic Implicationa Subreducts Lukasiewicz Implication Algebras Subvarieties Equational Bases |
| title_short |
Monadic MV-algebras II: Monadic implicational subreducts |
| title_full |
Monadic MV-algebras II: Monadic implicational subreducts |
| title_fullStr |
Monadic MV-algebras II: Monadic implicational subreducts |
| title_full_unstemmed |
Monadic MV-algebras II: Monadic implicational subreducts |
| title_sort |
Monadic MV-algebras II: Monadic implicational subreducts |
| dc.creator.none.fl_str_mv |
Cimadamore, Cecilia Rossana Díaz Varela, José Patricio |
| author |
Cimadamore, Cecilia Rossana |
| author_facet |
Cimadamore, Cecilia Rossana Díaz Varela, José Patricio |
| author_role |
author |
| author2 |
Díaz Varela, José Patricio |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Monadic Mv-Algebras Monadic Implicationa Subreducts Lukasiewicz Implication Algebras Subvarieties Equational Bases |
| topic |
Monadic Mv-Algebras Monadic Implicationa Subreducts Lukasiewicz Implication Algebras Subvarieties Equational Bases |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In this paper, we study the class of all monadic implicational subreducts, that is, the {→, ∀, 1}-subreducts of the class of monadic MV-algebras. We prove that this class is an equational class, which we denote by ML, and we give an equational basis for this variety. An algebra in ML is called a monadic Lukasiewicz implication algebra. We characterize the subdirectly irreducible members of ML and the congruences of every monadic Lukasiewicz implication algebra by monadic filters. We prove that ML is generated by its finite members. Finally, we completely describe the lattice of subvarieties, and we give an equational basis for each proper subvariety. Fil: Cimadamore, Cecilia Rossana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina Fil: Díaz Varela, José Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina |
| description |
In this paper, we study the class of all monadic implicational subreducts, that is, the {→, ∀, 1}-subreducts of the class of monadic MV-algebras. We prove that this class is an equational class, which we denote by ML, and we give an equational basis for this variety. An algebra in ML is called a monadic Lukasiewicz implication algebra. We characterize the subdirectly irreducible members of ML and the congruences of every monadic Lukasiewicz implication algebra by monadic filters. We prove that ML is generated by its finite members. Finally, we completely describe the lattice of subvarieties, and we give an equational basis for each proper subvariety. |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014-03 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/29828 Cimadamore, Cecilia Rossana; Díaz Varela, José Patricio; Monadic MV-algebras II: Monadic implicational subreducts; Springer; Algebra Universalis; 71; 3; 3-2014; 201-219 0002-5240 1420-8911 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/29828 |
| identifier_str_mv |
Cimadamore, Cecilia Rossana; Díaz Varela, José Patricio; Monadic MV-algebras II: Monadic implicational subreducts; Springer; Algebra Universalis; 71; 3; 3-2014; 201-219 0002-5240 1420-8911 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00012-014-0277-0 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00012-014-0277-0 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846082985283026944 |
| score |
13.22299 |