Monadic Wajsberg hoops

Autores
Díaz Varela, José Patricio; Cimadamore, Cecilia Rossana
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Wajsberg hoops are the { , →, 1}-subreducts (hoop-subreducts) of Wajsberg algebras, which are term equivalent to MV-algebras and are the algebraic models of Lukasiewicz infinite-valued logic. Monadic MV-algebras were introduced by Rutledge [Ph.D. thesis, Cornell University, 1959] as an algebraic model for the monadic predicate calculus of Lukasiewicz infinitevalued logic, in which only a single individual variable occurs. In this paper we study the class of { , →, ∀, 1}-subreducts (monadic hoop-subreducts) of monadic MV-algebras. We prove that this class, denoted by MWH, is an equational class and we give the identities that define it. An algebra in MWH is called a monadic Wajsberg hoop. We characterize the subdirectly irreducible members in MWH and the congruences by monadic filters. We prove that MWH is generated by its finite members. Then, we introduce the notion of width of a monadic Wajsberg hoop and study some of the subvarieties of monadic Wajsberg hoops of finite width k. Finally, we describe a monadic Wajsberg hoop as a monadic maximal filter within a certain monadic MValgebra such that the quotient is the two element chain.
Fil: Díaz Varela, José Patricio. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Cimadamore, Cecilia Rossana. Universidad Nacional del Sur. Departamento de Matemática; Argentina
Materia
MONADIC MV-ALGEBRAS
MONADIC HOOPS-SUBREDUCTS
WAJSBERG HOOPS
SUBVARIETIES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/108557

id CONICETDig_6d715441b8e137a04bda182b461b410c
oai_identifier_str oai:ri.conicet.gov.ar:11336/108557
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Monadic Wajsberg hoopsDíaz Varela, José PatricioCimadamore, Cecilia RossanaMONADIC MV-ALGEBRASMONADIC HOOPS-SUBREDUCTSWAJSBERG HOOPSSUBVARIETIEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Wajsberg hoops are the { , →, 1}-subreducts (hoop-subreducts) of Wajsberg algebras, which are term equivalent to MV-algebras and are the algebraic models of Lukasiewicz infinite-valued logic. Monadic MV-algebras were introduced by Rutledge [Ph.D. thesis, Cornell University, 1959] as an algebraic model for the monadic predicate calculus of Lukasiewicz infinitevalued logic, in which only a single individual variable occurs. In this paper we study the class of { , →, ∀, 1}-subreducts (monadic hoop-subreducts) of monadic MV-algebras. We prove that this class, denoted by MWH, is an equational class and we give the identities that define it. An algebra in MWH is called a monadic Wajsberg hoop. We characterize the subdirectly irreducible members in MWH and the congruences by monadic filters. We prove that MWH is generated by its finite members. Then, we introduce the notion of width of a monadic Wajsberg hoop and study some of the subvarieties of monadic Wajsberg hoops of finite width k. Finally, we describe a monadic Wajsberg hoop as a monadic maximal filter within a certain monadic MValgebra such that the quotient is the two element chain.Fil: Díaz Varela, José Patricio. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Cimadamore, Cecilia Rossana. Universidad Nacional del Sur. Departamento de Matemática; ArgentinaUnión Matemática Argentina2016-06-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/108557Díaz Varela, José Patricio; Cimadamore, Cecilia Rossana; Monadic Wajsberg hoops; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 57; 2; 28-6-2016; 63-830041-69321669-9637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/revuma.php?p=toc/vol57info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v57n2/v57n2a04.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:54:05Zoai:ri.conicet.gov.ar:11336/108557instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:54:05.886CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Monadic Wajsberg hoops
title Monadic Wajsberg hoops
spellingShingle Monadic Wajsberg hoops
Díaz Varela, José Patricio
MONADIC MV-ALGEBRAS
MONADIC HOOPS-SUBREDUCTS
WAJSBERG HOOPS
SUBVARIETIES
title_short Monadic Wajsberg hoops
title_full Monadic Wajsberg hoops
title_fullStr Monadic Wajsberg hoops
title_full_unstemmed Monadic Wajsberg hoops
title_sort Monadic Wajsberg hoops
dc.creator.none.fl_str_mv Díaz Varela, José Patricio
Cimadamore, Cecilia Rossana
author Díaz Varela, José Patricio
author_facet Díaz Varela, José Patricio
Cimadamore, Cecilia Rossana
author_role author
author2 Cimadamore, Cecilia Rossana
author2_role author
dc.subject.none.fl_str_mv MONADIC MV-ALGEBRAS
MONADIC HOOPS-SUBREDUCTS
WAJSBERG HOOPS
SUBVARIETIES
topic MONADIC MV-ALGEBRAS
MONADIC HOOPS-SUBREDUCTS
WAJSBERG HOOPS
SUBVARIETIES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Wajsberg hoops are the { , →, 1}-subreducts (hoop-subreducts) of Wajsberg algebras, which are term equivalent to MV-algebras and are the algebraic models of Lukasiewicz infinite-valued logic. Monadic MV-algebras were introduced by Rutledge [Ph.D. thesis, Cornell University, 1959] as an algebraic model for the monadic predicate calculus of Lukasiewicz infinitevalued logic, in which only a single individual variable occurs. In this paper we study the class of { , →, ∀, 1}-subreducts (monadic hoop-subreducts) of monadic MV-algebras. We prove that this class, denoted by MWH, is an equational class and we give the identities that define it. An algebra in MWH is called a monadic Wajsberg hoop. We characterize the subdirectly irreducible members in MWH and the congruences by monadic filters. We prove that MWH is generated by its finite members. Then, we introduce the notion of width of a monadic Wajsberg hoop and study some of the subvarieties of monadic Wajsberg hoops of finite width k. Finally, we describe a monadic Wajsberg hoop as a monadic maximal filter within a certain monadic MValgebra such that the quotient is the two element chain.
Fil: Díaz Varela, José Patricio. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Cimadamore, Cecilia Rossana. Universidad Nacional del Sur. Departamento de Matemática; Argentina
description Wajsberg hoops are the { , →, 1}-subreducts (hoop-subreducts) of Wajsberg algebras, which are term equivalent to MV-algebras and are the algebraic models of Lukasiewicz infinite-valued logic. Monadic MV-algebras were introduced by Rutledge [Ph.D. thesis, Cornell University, 1959] as an algebraic model for the monadic predicate calculus of Lukasiewicz infinitevalued logic, in which only a single individual variable occurs. In this paper we study the class of { , →, ∀, 1}-subreducts (monadic hoop-subreducts) of monadic MV-algebras. We prove that this class, denoted by MWH, is an equational class and we give the identities that define it. An algebra in MWH is called a monadic Wajsberg hoop. We characterize the subdirectly irreducible members in MWH and the congruences by monadic filters. We prove that MWH is generated by its finite members. Then, we introduce the notion of width of a monadic Wajsberg hoop and study some of the subvarieties of monadic Wajsberg hoops of finite width k. Finally, we describe a monadic Wajsberg hoop as a monadic maximal filter within a certain monadic MValgebra such that the quotient is the two element chain.
publishDate 2016
dc.date.none.fl_str_mv 2016-06-28
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/108557
Díaz Varela, José Patricio; Cimadamore, Cecilia Rossana; Monadic Wajsberg hoops; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 57; 2; 28-6-2016; 63-83
0041-6932
1669-9637
CONICET Digital
CONICET
url http://hdl.handle.net/11336/108557
identifier_str_mv Díaz Varela, José Patricio; Cimadamore, Cecilia Rossana; Monadic Wajsberg hoops; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 57; 2; 28-6-2016; 63-83
0041-6932
1669-9637
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/revuma.php?p=toc/vol57
info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v57n2/v57n2a04.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Unión Matemática Argentina
publisher.none.fl_str_mv Unión Matemática Argentina
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269264562618368
score 13.13397