Monadic Wajsberg hoops
- Autores
- Díaz Varela, José Patricio; Cimadamore, Cecilia Rossana
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Wajsberg hoops are the { , →, 1}-subreducts (hoop-subreducts) of Wajsberg algebras, which are term equivalent to MV-algebras and are the algebraic models of Lukasiewicz infinite-valued logic. Monadic MV-algebras were introduced by Rutledge [Ph.D. thesis, Cornell University, 1959] as an algebraic model for the monadic predicate calculus of Lukasiewicz infinitevalued logic, in which only a single individual variable occurs. In this paper we study the class of { , →, ∀, 1}-subreducts (monadic hoop-subreducts) of monadic MV-algebras. We prove that this class, denoted by MWH, is an equational class and we give the identities that define it. An algebra in MWH is called a monadic Wajsberg hoop. We characterize the subdirectly irreducible members in MWH and the congruences by monadic filters. We prove that MWH is generated by its finite members. Then, we introduce the notion of width of a monadic Wajsberg hoop and study some of the subvarieties of monadic Wajsberg hoops of finite width k. Finally, we describe a monadic Wajsberg hoop as a monadic maximal filter within a certain monadic MValgebra such that the quotient is the two element chain.
Fil: Díaz Varela, José Patricio. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Cimadamore, Cecilia Rossana. Universidad Nacional del Sur. Departamento de Matemática; Argentina - Materia
-
MONADIC MV-ALGEBRAS
MONADIC HOOPS-SUBREDUCTS
WAJSBERG HOOPS
SUBVARIETIES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/108557
Ver los metadatos del registro completo
id |
CONICETDig_6d715441b8e137a04bda182b461b410c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/108557 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Monadic Wajsberg hoopsDíaz Varela, José PatricioCimadamore, Cecilia RossanaMONADIC MV-ALGEBRASMONADIC HOOPS-SUBREDUCTSWAJSBERG HOOPSSUBVARIETIEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Wajsberg hoops are the { , →, 1}-subreducts (hoop-subreducts) of Wajsberg algebras, which are term equivalent to MV-algebras and are the algebraic models of Lukasiewicz infinite-valued logic. Monadic MV-algebras were introduced by Rutledge [Ph.D. thesis, Cornell University, 1959] as an algebraic model for the monadic predicate calculus of Lukasiewicz infinitevalued logic, in which only a single individual variable occurs. In this paper we study the class of { , →, ∀, 1}-subreducts (monadic hoop-subreducts) of monadic MV-algebras. We prove that this class, denoted by MWH, is an equational class and we give the identities that define it. An algebra in MWH is called a monadic Wajsberg hoop. We characterize the subdirectly irreducible members in MWH and the congruences by monadic filters. We prove that MWH is generated by its finite members. Then, we introduce the notion of width of a monadic Wajsberg hoop and study some of the subvarieties of monadic Wajsberg hoops of finite width k. Finally, we describe a monadic Wajsberg hoop as a monadic maximal filter within a certain monadic MValgebra such that the quotient is the two element chain.Fil: Díaz Varela, José Patricio. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Cimadamore, Cecilia Rossana. Universidad Nacional del Sur. Departamento de Matemática; ArgentinaUnión Matemática Argentina2016-06-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/108557Díaz Varela, José Patricio; Cimadamore, Cecilia Rossana; Monadic Wajsberg hoops; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 57; 2; 28-6-2016; 63-830041-69321669-9637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/revuma.php?p=toc/vol57info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v57n2/v57n2a04.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:54:05Zoai:ri.conicet.gov.ar:11336/108557instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:54:05.886CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Monadic Wajsberg hoops |
title |
Monadic Wajsberg hoops |
spellingShingle |
Monadic Wajsberg hoops Díaz Varela, José Patricio MONADIC MV-ALGEBRAS MONADIC HOOPS-SUBREDUCTS WAJSBERG HOOPS SUBVARIETIES |
title_short |
Monadic Wajsberg hoops |
title_full |
Monadic Wajsberg hoops |
title_fullStr |
Monadic Wajsberg hoops |
title_full_unstemmed |
Monadic Wajsberg hoops |
title_sort |
Monadic Wajsberg hoops |
dc.creator.none.fl_str_mv |
Díaz Varela, José Patricio Cimadamore, Cecilia Rossana |
author |
Díaz Varela, José Patricio |
author_facet |
Díaz Varela, José Patricio Cimadamore, Cecilia Rossana |
author_role |
author |
author2 |
Cimadamore, Cecilia Rossana |
author2_role |
author |
dc.subject.none.fl_str_mv |
MONADIC MV-ALGEBRAS MONADIC HOOPS-SUBREDUCTS WAJSBERG HOOPS SUBVARIETIES |
topic |
MONADIC MV-ALGEBRAS MONADIC HOOPS-SUBREDUCTS WAJSBERG HOOPS SUBVARIETIES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Wajsberg hoops are the { , →, 1}-subreducts (hoop-subreducts) of Wajsberg algebras, which are term equivalent to MV-algebras and are the algebraic models of Lukasiewicz infinite-valued logic. Monadic MV-algebras were introduced by Rutledge [Ph.D. thesis, Cornell University, 1959] as an algebraic model for the monadic predicate calculus of Lukasiewicz infinitevalued logic, in which only a single individual variable occurs. In this paper we study the class of { , →, ∀, 1}-subreducts (monadic hoop-subreducts) of monadic MV-algebras. We prove that this class, denoted by MWH, is an equational class and we give the identities that define it. An algebra in MWH is called a monadic Wajsberg hoop. We characterize the subdirectly irreducible members in MWH and the congruences by monadic filters. We prove that MWH is generated by its finite members. Then, we introduce the notion of width of a monadic Wajsberg hoop and study some of the subvarieties of monadic Wajsberg hoops of finite width k. Finally, we describe a monadic Wajsberg hoop as a monadic maximal filter within a certain monadic MValgebra such that the quotient is the two element chain. Fil: Díaz Varela, José Patricio. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina Fil: Cimadamore, Cecilia Rossana. Universidad Nacional del Sur. Departamento de Matemática; Argentina |
description |
Wajsberg hoops are the { , →, 1}-subreducts (hoop-subreducts) of Wajsberg algebras, which are term equivalent to MV-algebras and are the algebraic models of Lukasiewicz infinite-valued logic. Monadic MV-algebras were introduced by Rutledge [Ph.D. thesis, Cornell University, 1959] as an algebraic model for the monadic predicate calculus of Lukasiewicz infinitevalued logic, in which only a single individual variable occurs. In this paper we study the class of { , →, ∀, 1}-subreducts (monadic hoop-subreducts) of monadic MV-algebras. We prove that this class, denoted by MWH, is an equational class and we give the identities that define it. An algebra in MWH is called a monadic Wajsberg hoop. We characterize the subdirectly irreducible members in MWH and the congruences by monadic filters. We prove that MWH is generated by its finite members. Then, we introduce the notion of width of a monadic Wajsberg hoop and study some of the subvarieties of monadic Wajsberg hoops of finite width k. Finally, we describe a monadic Wajsberg hoop as a monadic maximal filter within a certain monadic MValgebra such that the quotient is the two element chain. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-06-28 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/108557 Díaz Varela, José Patricio; Cimadamore, Cecilia Rossana; Monadic Wajsberg hoops; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 57; 2; 28-6-2016; 63-83 0041-6932 1669-9637 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/108557 |
identifier_str_mv |
Díaz Varela, José Patricio; Cimadamore, Cecilia Rossana; Monadic Wajsberg hoops; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 57; 2; 28-6-2016; 63-83 0041-6932 1669-9637 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/revuma.php?p=toc/vol57 info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v57n2/v57n2a04.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Unión Matemática Argentina |
publisher.none.fl_str_mv |
Unión Matemática Argentina |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269264562618368 |
score |
13.13397 |