Binomial D-modules
- Autores
- Dickenstein, Alicia Marcela; Matusevich, Laura Felicia; Miller, Ezra
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study quotients of the Weyl algebra by left ideals whose generators consist of an arbitrary Z d -graded binomial ideal I in C[∂1, . . . , ∂n] along with Euler operators de- fined by the grading and a parameter β ∈ C d . We determine the parameters β for which these D-modules (i) are holonomic (equivalently, regular holonomic, when I is standard-graded); (ii) decompose as direct sums indexed by the primary components of I; and (iii) have holonomic rank greater than the rank for generic β. In each of these three cases, the parameters in question are precisely those outside of a certain explicitly described affine subspace arrangement in C d . In the special case of Horn hypergeometric D-modules, when I is a lattice basis ideal, we furthermore compute the generic holonomic rank combinatorially and write down a basis of solutions in terms of associated A-hypergeometric functions. This study relies fundamentally on the explicit lattice point description of the primary components of an arbitrary binomial ideal in characteristic zero, which we derive in our companion article [DMM08].
Fil: Dickenstein, Alicia Marcela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Matusevich, Laura Felicia. Texas A&M University; Estados Unidos
Fil: Miller, Ezra. University Of Minnesota; Estados Unidos - Materia
-
Hypergeometric
D-module
Holonomic rank
Horn - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/15069
Ver los metadatos del registro completo
id |
CONICETDig_7f02411cb933cab2554896eaf55e585e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/15069 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Binomial D-modulesDickenstein, Alicia MarcelaMatusevich, Laura FeliciaMiller, EzraHypergeometricD-moduleHolonomic rankHornhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study quotients of the Weyl algebra by left ideals whose generators consist of an arbitrary Z d -graded binomial ideal I in C[∂1, . . . , ∂n] along with Euler operators de- fined by the grading and a parameter β ∈ C d . We determine the parameters β for which these D-modules (i) are holonomic (equivalently, regular holonomic, when I is standard-graded); (ii) decompose as direct sums indexed by the primary components of I; and (iii) have holonomic rank greater than the rank for generic β. In each of these three cases, the parameters in question are precisely those outside of a certain explicitly described affine subspace arrangement in C d . In the special case of Horn hypergeometric D-modules, when I is a lattice basis ideal, we furthermore compute the generic holonomic rank combinatorially and write down a basis of solutions in terms of associated A-hypergeometric functions. This study relies fundamentally on the explicit lattice point description of the primary components of an arbitrary binomial ideal in characteristic zero, which we derive in our companion article [DMM08].Fil: Dickenstein, Alicia Marcela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Matusevich, Laura Felicia. Texas A&M University; Estados UnidosFil: Miller, Ezra. University Of Minnesota; Estados UnidosDuke University Press2010-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/15069Dickenstein, Alicia Marcela; Matusevich, Laura Felicia; Miller, Ezra; Binomial D-modules; Duke University Press; Duke Mathematical Journal; 151; 3; 3-2010; 385-4290012-7094enginfo:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.dmj/1265637658info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:11:20Zoai:ri.conicet.gov.ar:11336/15069instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:11:20.267CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Binomial D-modules |
title |
Binomial D-modules |
spellingShingle |
Binomial D-modules Dickenstein, Alicia Marcela Hypergeometric D-module Holonomic rank Horn |
title_short |
Binomial D-modules |
title_full |
Binomial D-modules |
title_fullStr |
Binomial D-modules |
title_full_unstemmed |
Binomial D-modules |
title_sort |
Binomial D-modules |
dc.creator.none.fl_str_mv |
Dickenstein, Alicia Marcela Matusevich, Laura Felicia Miller, Ezra |
author |
Dickenstein, Alicia Marcela |
author_facet |
Dickenstein, Alicia Marcela Matusevich, Laura Felicia Miller, Ezra |
author_role |
author |
author2 |
Matusevich, Laura Felicia Miller, Ezra |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Hypergeometric D-module Holonomic rank Horn |
topic |
Hypergeometric D-module Holonomic rank Horn |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study quotients of the Weyl algebra by left ideals whose generators consist of an arbitrary Z d -graded binomial ideal I in C[∂1, . . . , ∂n] along with Euler operators de- fined by the grading and a parameter β ∈ C d . We determine the parameters β for which these D-modules (i) are holonomic (equivalently, regular holonomic, when I is standard-graded); (ii) decompose as direct sums indexed by the primary components of I; and (iii) have holonomic rank greater than the rank for generic β. In each of these three cases, the parameters in question are precisely those outside of a certain explicitly described affine subspace arrangement in C d . In the special case of Horn hypergeometric D-modules, when I is a lattice basis ideal, we furthermore compute the generic holonomic rank combinatorially and write down a basis of solutions in terms of associated A-hypergeometric functions. This study relies fundamentally on the explicit lattice point description of the primary components of an arbitrary binomial ideal in characteristic zero, which we derive in our companion article [DMM08]. Fil: Dickenstein, Alicia Marcela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Matusevich, Laura Felicia. Texas A&M University; Estados Unidos Fil: Miller, Ezra. University Of Minnesota; Estados Unidos |
description |
We study quotients of the Weyl algebra by left ideals whose generators consist of an arbitrary Z d -graded binomial ideal I in C[∂1, . . . , ∂n] along with Euler operators de- fined by the grading and a parameter β ∈ C d . We determine the parameters β for which these D-modules (i) are holonomic (equivalently, regular holonomic, when I is standard-graded); (ii) decompose as direct sums indexed by the primary components of I; and (iii) have holonomic rank greater than the rank for generic β. In each of these three cases, the parameters in question are precisely those outside of a certain explicitly described affine subspace arrangement in C d . In the special case of Horn hypergeometric D-modules, when I is a lattice basis ideal, we furthermore compute the generic holonomic rank combinatorially and write down a basis of solutions in terms of associated A-hypergeometric functions. This study relies fundamentally on the explicit lattice point description of the primary components of an arbitrary binomial ideal in characteristic zero, which we derive in our companion article [DMM08]. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/15069 Dickenstein, Alicia Marcela; Matusevich, Laura Felicia; Miller, Ezra; Binomial D-modules; Duke University Press; Duke Mathematical Journal; 151; 3; 3-2010; 385-429 0012-7094 |
url |
http://hdl.handle.net/11336/15069 |
identifier_str_mv |
Dickenstein, Alicia Marcela; Matusevich, Laura Felicia; Miller, Ezra; Binomial D-modules; Duke University Press; Duke Mathematical Journal; 151; 3; 3-2010; 385-429 0012-7094 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.dmj/1265637658 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf |
dc.publisher.none.fl_str_mv |
Duke University Press |
publisher.none.fl_str_mv |
Duke University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270153812738048 |
score |
13.13397 |