Binomial D-modules

Autores
Dickenstein, Alicia Marcela; Matusevich, Laura Felicia; Miller, Ezra
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study quotients of the Weyl algebra by left ideals whose generators consist of an arbitrary Z d -graded binomial ideal I in C[∂1, . . . , ∂n] along with Euler operators de- fined by the grading and a parameter β ∈ C d . We determine the parameters β for which these D-modules (i) are holonomic (equivalently, regular holonomic, when I is standard-graded); (ii) decompose as direct sums indexed by the primary components of I; and (iii) have holonomic rank greater than the rank for generic β. In each of these three cases, the parameters in question are precisely those outside of a certain explicitly described affine subspace arrangement in C d . In the special case of Horn hypergeometric D-modules, when I is a lattice basis ideal, we furthermore compute the generic holonomic rank combinatorially and write down a basis of solutions in terms of associated A-hypergeometric functions. This study relies fundamentally on the explicit lattice point description of the primary components of an arbitrary binomial ideal in characteristic zero, which we derive in our companion article [DMM08].
Fil: Dickenstein, Alicia Marcela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Matusevich, Laura Felicia. Texas A&M University; Estados Unidos
Fil: Miller, Ezra. University Of Minnesota; Estados Unidos
Materia
Hypergeometric
D-module
Holonomic rank
Horn
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/15069

id CONICETDig_7f02411cb933cab2554896eaf55e585e
oai_identifier_str oai:ri.conicet.gov.ar:11336/15069
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Binomial D-modulesDickenstein, Alicia MarcelaMatusevich, Laura FeliciaMiller, EzraHypergeometricD-moduleHolonomic rankHornhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study quotients of the Weyl algebra by left ideals whose generators consist of an arbitrary Z d -graded binomial ideal I in C[∂1, . . . , ∂n] along with Euler operators de- fined by the grading and a parameter β ∈ C d . We determine the parameters β for which these D-modules (i) are holonomic (equivalently, regular holonomic, when I is standard-graded); (ii) decompose as direct sums indexed by the primary components of I; and (iii) have holonomic rank greater than the rank for generic β. In each of these three cases, the parameters in question are precisely those outside of a certain explicitly described affine subspace arrangement in C d . In the special case of Horn hypergeometric D-modules, when I is a lattice basis ideal, we furthermore compute the generic holonomic rank combinatorially and write down a basis of solutions in terms of associated A-hypergeometric functions. This study relies fundamentally on the explicit lattice point description of the primary components of an arbitrary binomial ideal in characteristic zero, which we derive in our companion article [DMM08].Fil: Dickenstein, Alicia Marcela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Matusevich, Laura Felicia. Texas A&M University; Estados UnidosFil: Miller, Ezra. University Of Minnesota; Estados UnidosDuke University Press2010-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/15069Dickenstein, Alicia Marcela; Matusevich, Laura Felicia; Miller, Ezra; Binomial D-modules; Duke University Press; Duke Mathematical Journal; 151; 3; 3-2010; 385-4290012-7094enginfo:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.dmj/1265637658info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:11:20Zoai:ri.conicet.gov.ar:11336/15069instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:11:20.267CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Binomial D-modules
title Binomial D-modules
spellingShingle Binomial D-modules
Dickenstein, Alicia Marcela
Hypergeometric
D-module
Holonomic rank
Horn
title_short Binomial D-modules
title_full Binomial D-modules
title_fullStr Binomial D-modules
title_full_unstemmed Binomial D-modules
title_sort Binomial D-modules
dc.creator.none.fl_str_mv Dickenstein, Alicia Marcela
Matusevich, Laura Felicia
Miller, Ezra
author Dickenstein, Alicia Marcela
author_facet Dickenstein, Alicia Marcela
Matusevich, Laura Felicia
Miller, Ezra
author_role author
author2 Matusevich, Laura Felicia
Miller, Ezra
author2_role author
author
dc.subject.none.fl_str_mv Hypergeometric
D-module
Holonomic rank
Horn
topic Hypergeometric
D-module
Holonomic rank
Horn
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study quotients of the Weyl algebra by left ideals whose generators consist of an arbitrary Z d -graded binomial ideal I in C[∂1, . . . , ∂n] along with Euler operators de- fined by the grading and a parameter β ∈ C d . We determine the parameters β for which these D-modules (i) are holonomic (equivalently, regular holonomic, when I is standard-graded); (ii) decompose as direct sums indexed by the primary components of I; and (iii) have holonomic rank greater than the rank for generic β. In each of these three cases, the parameters in question are precisely those outside of a certain explicitly described affine subspace arrangement in C d . In the special case of Horn hypergeometric D-modules, when I is a lattice basis ideal, we furthermore compute the generic holonomic rank combinatorially and write down a basis of solutions in terms of associated A-hypergeometric functions. This study relies fundamentally on the explicit lattice point description of the primary components of an arbitrary binomial ideal in characteristic zero, which we derive in our companion article [DMM08].
Fil: Dickenstein, Alicia Marcela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Matusevich, Laura Felicia. Texas A&M University; Estados Unidos
Fil: Miller, Ezra. University Of Minnesota; Estados Unidos
description We study quotients of the Weyl algebra by left ideals whose generators consist of an arbitrary Z d -graded binomial ideal I in C[∂1, . . . , ∂n] along with Euler operators de- fined by the grading and a parameter β ∈ C d . We determine the parameters β for which these D-modules (i) are holonomic (equivalently, regular holonomic, when I is standard-graded); (ii) decompose as direct sums indexed by the primary components of I; and (iii) have holonomic rank greater than the rank for generic β. In each of these three cases, the parameters in question are precisely those outside of a certain explicitly described affine subspace arrangement in C d . In the special case of Horn hypergeometric D-modules, when I is a lattice basis ideal, we furthermore compute the generic holonomic rank combinatorially and write down a basis of solutions in terms of associated A-hypergeometric functions. This study relies fundamentally on the explicit lattice point description of the primary components of an arbitrary binomial ideal in characteristic zero, which we derive in our companion article [DMM08].
publishDate 2010
dc.date.none.fl_str_mv 2010-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/15069
Dickenstein, Alicia Marcela; Matusevich, Laura Felicia; Miller, Ezra; Binomial D-modules; Duke University Press; Duke Mathematical Journal; 151; 3; 3-2010; 385-429
0012-7094
url http://hdl.handle.net/11336/15069
identifier_str_mv Dickenstein, Alicia Marcela; Matusevich, Laura Felicia; Miller, Ezra; Binomial D-modules; Duke University Press; Duke Mathematical Journal; 151; 3; 3-2010; 385-429
0012-7094
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.dmj/1265637658
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/zip
application/pdf
dc.publisher.none.fl_str_mv Duke University Press
publisher.none.fl_str_mv Duke University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270153812738048
score 13.13397