Computation of object approach by a system of visual motion-sensitive neurons in the crab Neohelice
- Autores
- Oliva, Damian Ernesto; Tomsic, Daniel
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- .Similar to most visual animals, crabs perform proper avoidance responses to objects directly approaching them. The monostratified lobula giant neurons of type 1 (MLG1) of crabs constitute an ensemble of 14–16 bilateral pairs of motion-detecting neurons projecting from the lobula (third optic neuropile) to the midbrain, with receptive fields that are distributed over the extensive visual field of the animal's eye. Considering the crab Neohelice (previously Chasmagnathus) granulata, here we describe the response of these neurons to looming stimuli that simulate objects approaching the animal on a collision course. We found that the peak firing time of MLG1 acts as an angular threshold detector signaling, with a delay of δ = 35 ms, the time at which an object reaches a fixed angular threshold of 49°. Using in vivo intracellular recordings, we detected the existence of excitatory and inhibitory synaptic currents that shape the neural response. Other functional features identified in the MLG1 neurons were phasic responses at the beginning of the approach, a relation between the stimulus angular velocity and the excitation delay, and a mapping between membrane potential and firing frequency. Using this information, we propose a biophysical model of the mechanisms that regulate the encoding of looming stimuli. Furthermore, we found that the parameter encoded by the MLG1 firing frequency during the approach is the stimulus angular velocity. The proposed model fits the experimental results and predicts the neural response to a qualitatively different stimulus. Based on these and previous results, we propose that the MLG1 neuron system acts as a directional coding system for collision avoidance.
Fil: Oliva, Damian Ernesto. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Tomsic, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina - Materia
-
Neurocomputation
Visual Research
Electrophysiology
Looming
Collision Avoidance
Motion Detection
Lobula Neurons
Receptive Field
Crustacean - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/31831
Ver los metadatos del registro completo
id |
CONICETDig_7ee90f6fec79b5e17df1d79106f9902d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/31831 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Computation of object approach by a system of visual motion-sensitive neurons in the crab NeoheliceOliva, Damian ErnestoTomsic, DanielNeurocomputationVisual ResearchElectrophysiologyLoomingCollision AvoidanceMotion DetectionLobula NeuronsReceptive FieldCrustaceanhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1.Similar to most visual animals, crabs perform proper avoidance responses to objects directly approaching them. The monostratified lobula giant neurons of type 1 (MLG1) of crabs constitute an ensemble of 14–16 bilateral pairs of motion-detecting neurons projecting from the lobula (third optic neuropile) to the midbrain, with receptive fields that are distributed over the extensive visual field of the animal's eye. Considering the crab Neohelice (previously Chasmagnathus) granulata, here we describe the response of these neurons to looming stimuli that simulate objects approaching the animal on a collision course. We found that the peak firing time of MLG1 acts as an angular threshold detector signaling, with a delay of δ = 35 ms, the time at which an object reaches a fixed angular threshold of 49°. Using in vivo intracellular recordings, we detected the existence of excitatory and inhibitory synaptic currents that shape the neural response. Other functional features identified in the MLG1 neurons were phasic responses at the beginning of the approach, a relation between the stimulus angular velocity and the excitation delay, and a mapping between membrane potential and firing frequency. Using this information, we propose a biophysical model of the mechanisms that regulate the encoding of looming stimuli. Furthermore, we found that the parameter encoded by the MLG1 firing frequency during the approach is the stimulus angular velocity. The proposed model fits the experimental results and predicts the neural response to a qualitatively different stimulus. Based on these and previous results, we propose that the MLG1 neuron system acts as a directional coding system for collision avoidance.Fil: Oliva, Damian Ernesto. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Tomsic, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaAmerican Physiological Society2014-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/31831Oliva, Damian Ernesto; Tomsic, Daniel; Computation of object approach by a system of visual motion-sensitive neurons in the crab Neohelice; American Physiological Society; Journal of Neurophysiology; 112; 6; 9-2014; 1477-14900022-3077CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.physiology.org/doi/abs/10.1152/jn.00921.2013info:eu-repo/semantics/altIdentifier/doi/10.1152/jn.00921.2013info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:07:23Zoai:ri.conicet.gov.ar:11336/31831instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:07:23.741CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Computation of object approach by a system of visual motion-sensitive neurons in the crab Neohelice |
title |
Computation of object approach by a system of visual motion-sensitive neurons in the crab Neohelice |
spellingShingle |
Computation of object approach by a system of visual motion-sensitive neurons in the crab Neohelice Oliva, Damian Ernesto Neurocomputation Visual Research Electrophysiology Looming Collision Avoidance Motion Detection Lobula Neurons Receptive Field Crustacean |
title_short |
Computation of object approach by a system of visual motion-sensitive neurons in the crab Neohelice |
title_full |
Computation of object approach by a system of visual motion-sensitive neurons in the crab Neohelice |
title_fullStr |
Computation of object approach by a system of visual motion-sensitive neurons in the crab Neohelice |
title_full_unstemmed |
Computation of object approach by a system of visual motion-sensitive neurons in the crab Neohelice |
title_sort |
Computation of object approach by a system of visual motion-sensitive neurons in the crab Neohelice |
dc.creator.none.fl_str_mv |
Oliva, Damian Ernesto Tomsic, Daniel |
author |
Oliva, Damian Ernesto |
author_facet |
Oliva, Damian Ernesto Tomsic, Daniel |
author_role |
author |
author2 |
Tomsic, Daniel |
author2_role |
author |
dc.subject.none.fl_str_mv |
Neurocomputation Visual Research Electrophysiology Looming Collision Avoidance Motion Detection Lobula Neurons Receptive Field Crustacean |
topic |
Neurocomputation Visual Research Electrophysiology Looming Collision Avoidance Motion Detection Lobula Neurons Receptive Field Crustacean |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
.Similar to most visual animals, crabs perform proper avoidance responses to objects directly approaching them. The monostratified lobula giant neurons of type 1 (MLG1) of crabs constitute an ensemble of 14–16 bilateral pairs of motion-detecting neurons projecting from the lobula (third optic neuropile) to the midbrain, with receptive fields that are distributed over the extensive visual field of the animal's eye. Considering the crab Neohelice (previously Chasmagnathus) granulata, here we describe the response of these neurons to looming stimuli that simulate objects approaching the animal on a collision course. We found that the peak firing time of MLG1 acts as an angular threshold detector signaling, with a delay of δ = 35 ms, the time at which an object reaches a fixed angular threshold of 49°. Using in vivo intracellular recordings, we detected the existence of excitatory and inhibitory synaptic currents that shape the neural response. Other functional features identified in the MLG1 neurons were phasic responses at the beginning of the approach, a relation between the stimulus angular velocity and the excitation delay, and a mapping between membrane potential and firing frequency. Using this information, we propose a biophysical model of the mechanisms that regulate the encoding of looming stimuli. Furthermore, we found that the parameter encoded by the MLG1 firing frequency during the approach is the stimulus angular velocity. The proposed model fits the experimental results and predicts the neural response to a qualitatively different stimulus. Based on these and previous results, we propose that the MLG1 neuron system acts as a directional coding system for collision avoidance. Fil: Oliva, Damian Ernesto. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Tomsic, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina |
description |
.Similar to most visual animals, crabs perform proper avoidance responses to objects directly approaching them. The monostratified lobula giant neurons of type 1 (MLG1) of crabs constitute an ensemble of 14–16 bilateral pairs of motion-detecting neurons projecting from the lobula (third optic neuropile) to the midbrain, with receptive fields that are distributed over the extensive visual field of the animal's eye. Considering the crab Neohelice (previously Chasmagnathus) granulata, here we describe the response of these neurons to looming stimuli that simulate objects approaching the animal on a collision course. We found that the peak firing time of MLG1 acts as an angular threshold detector signaling, with a delay of δ = 35 ms, the time at which an object reaches a fixed angular threshold of 49°. Using in vivo intracellular recordings, we detected the existence of excitatory and inhibitory synaptic currents that shape the neural response. Other functional features identified in the MLG1 neurons were phasic responses at the beginning of the approach, a relation between the stimulus angular velocity and the excitation delay, and a mapping between membrane potential and firing frequency. Using this information, we propose a biophysical model of the mechanisms that regulate the encoding of looming stimuli. Furthermore, we found that the parameter encoded by the MLG1 firing frequency during the approach is the stimulus angular velocity. The proposed model fits the experimental results and predicts the neural response to a qualitatively different stimulus. Based on these and previous results, we propose that the MLG1 neuron system acts as a directional coding system for collision avoidance. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/31831 Oliva, Damian Ernesto; Tomsic, Daniel; Computation of object approach by a system of visual motion-sensitive neurons in the crab Neohelice; American Physiological Society; Journal of Neurophysiology; 112; 6; 9-2014; 1477-1490 0022-3077 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/31831 |
identifier_str_mv |
Oliva, Damian Ernesto; Tomsic, Daniel; Computation of object approach by a system of visual motion-sensitive neurons in the crab Neohelice; American Physiological Society; Journal of Neurophysiology; 112; 6; 9-2014; 1477-1490 0022-3077 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.physiology.org/doi/abs/10.1152/jn.00921.2013 info:eu-repo/semantics/altIdentifier/doi/10.1152/jn.00921.2013 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physiological Society |
publisher.none.fl_str_mv |
American Physiological Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613932769083392 |
score |
13.070432 |