Computation of object approach by a system of visual motion-sensitive neurons in the crab Neohelice

Autores
Oliva, Damian Ernesto; Tomsic, Daniel
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
.Similar to most visual animals, crabs perform proper avoidance responses to objects directly approaching them. The monostratified lobula giant neurons of type 1 (MLG1) of crabs constitute an ensemble of 14–16 bilateral pairs of motion-detecting neurons projecting from the lobula (third optic neuropile) to the midbrain, with receptive fields that are distributed over the extensive visual field of the animal's eye. Considering the crab Neohelice (previously Chasmagnathus) granulata, here we describe the response of these neurons to looming stimuli that simulate objects approaching the animal on a collision course. We found that the peak firing time of MLG1 acts as an angular threshold detector signaling, with a delay of δ = 35 ms, the time at which an object reaches a fixed angular threshold of 49°. Using in vivo intracellular recordings, we detected the existence of excitatory and inhibitory synaptic currents that shape the neural response. Other functional features identified in the MLG1 neurons were phasic responses at the beginning of the approach, a relation between the stimulus angular velocity and the excitation delay, and a mapping between membrane potential and firing frequency. Using this information, we propose a biophysical model of the mechanisms that regulate the encoding of looming stimuli. Furthermore, we found that the parameter encoded by the MLG1 firing frequency during the approach is the stimulus angular velocity. The proposed model fits the experimental results and predicts the neural response to a qualitatively different stimulus. Based on these and previous results, we propose that the MLG1 neuron system acts as a directional coding system for collision avoidance.
Fil: Oliva, Damian Ernesto. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Tomsic, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina
Materia
Neurocomputation
Visual Research
Electrophysiology
Looming
Collision Avoidance
Motion Detection
Lobula Neurons
Receptive Field
Crustacean
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/31831

id CONICETDig_7ee90f6fec79b5e17df1d79106f9902d
oai_identifier_str oai:ri.conicet.gov.ar:11336/31831
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Computation of object approach by a system of visual motion-sensitive neurons in the crab NeoheliceOliva, Damian ErnestoTomsic, DanielNeurocomputationVisual ResearchElectrophysiologyLoomingCollision AvoidanceMotion DetectionLobula NeuronsReceptive FieldCrustaceanhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1.Similar to most visual animals, crabs perform proper avoidance responses to objects directly approaching them. The monostratified lobula giant neurons of type 1 (MLG1) of crabs constitute an ensemble of 14–16 bilateral pairs of motion-detecting neurons projecting from the lobula (third optic neuropile) to the midbrain, with receptive fields that are distributed over the extensive visual field of the animal's eye. Considering the crab Neohelice (previously Chasmagnathus) granulata, here we describe the response of these neurons to looming stimuli that simulate objects approaching the animal on a collision course. We found that the peak firing time of MLG1 acts as an angular threshold detector signaling, with a delay of δ = 35 ms, the time at which an object reaches a fixed angular threshold of 49°. Using in vivo intracellular recordings, we detected the existence of excitatory and inhibitory synaptic currents that shape the neural response. Other functional features identified in the MLG1 neurons were phasic responses at the beginning of the approach, a relation between the stimulus angular velocity and the excitation delay, and a mapping between membrane potential and firing frequency. Using this information, we propose a biophysical model of the mechanisms that regulate the encoding of looming stimuli. Furthermore, we found that the parameter encoded by the MLG1 firing frequency during the approach is the stimulus angular velocity. The proposed model fits the experimental results and predicts the neural response to a qualitatively different stimulus. Based on these and previous results, we propose that the MLG1 neuron system acts as a directional coding system for collision avoidance.Fil: Oliva, Damian Ernesto. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Tomsic, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaAmerican Physiological Society2014-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/31831Oliva, Damian Ernesto; Tomsic, Daniel; Computation of object approach by a system of visual motion-sensitive neurons in the crab Neohelice; American Physiological Society; Journal of Neurophysiology; 112; 6; 9-2014; 1477-14900022-3077CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.physiology.org/doi/abs/10.1152/jn.00921.2013info:eu-repo/semantics/altIdentifier/doi/10.1152/jn.00921.2013info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:07:23Zoai:ri.conicet.gov.ar:11336/31831instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:07:23.741CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Computation of object approach by a system of visual motion-sensitive neurons in the crab Neohelice
title Computation of object approach by a system of visual motion-sensitive neurons in the crab Neohelice
spellingShingle Computation of object approach by a system of visual motion-sensitive neurons in the crab Neohelice
Oliva, Damian Ernesto
Neurocomputation
Visual Research
Electrophysiology
Looming
Collision Avoidance
Motion Detection
Lobula Neurons
Receptive Field
Crustacean
title_short Computation of object approach by a system of visual motion-sensitive neurons in the crab Neohelice
title_full Computation of object approach by a system of visual motion-sensitive neurons in the crab Neohelice
title_fullStr Computation of object approach by a system of visual motion-sensitive neurons in the crab Neohelice
title_full_unstemmed Computation of object approach by a system of visual motion-sensitive neurons in the crab Neohelice
title_sort Computation of object approach by a system of visual motion-sensitive neurons in the crab Neohelice
dc.creator.none.fl_str_mv Oliva, Damian Ernesto
Tomsic, Daniel
author Oliva, Damian Ernesto
author_facet Oliva, Damian Ernesto
Tomsic, Daniel
author_role author
author2 Tomsic, Daniel
author2_role author
dc.subject.none.fl_str_mv Neurocomputation
Visual Research
Electrophysiology
Looming
Collision Avoidance
Motion Detection
Lobula Neurons
Receptive Field
Crustacean
topic Neurocomputation
Visual Research
Electrophysiology
Looming
Collision Avoidance
Motion Detection
Lobula Neurons
Receptive Field
Crustacean
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv .Similar to most visual animals, crabs perform proper avoidance responses to objects directly approaching them. The monostratified lobula giant neurons of type 1 (MLG1) of crabs constitute an ensemble of 14–16 bilateral pairs of motion-detecting neurons projecting from the lobula (third optic neuropile) to the midbrain, with receptive fields that are distributed over the extensive visual field of the animal's eye. Considering the crab Neohelice (previously Chasmagnathus) granulata, here we describe the response of these neurons to looming stimuli that simulate objects approaching the animal on a collision course. We found that the peak firing time of MLG1 acts as an angular threshold detector signaling, with a delay of δ = 35 ms, the time at which an object reaches a fixed angular threshold of 49°. Using in vivo intracellular recordings, we detected the existence of excitatory and inhibitory synaptic currents that shape the neural response. Other functional features identified in the MLG1 neurons were phasic responses at the beginning of the approach, a relation between the stimulus angular velocity and the excitation delay, and a mapping between membrane potential and firing frequency. Using this information, we propose a biophysical model of the mechanisms that regulate the encoding of looming stimuli. Furthermore, we found that the parameter encoded by the MLG1 firing frequency during the approach is the stimulus angular velocity. The proposed model fits the experimental results and predicts the neural response to a qualitatively different stimulus. Based on these and previous results, we propose that the MLG1 neuron system acts as a directional coding system for collision avoidance.
Fil: Oliva, Damian Ernesto. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Tomsic, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina
description .Similar to most visual animals, crabs perform proper avoidance responses to objects directly approaching them. The monostratified lobula giant neurons of type 1 (MLG1) of crabs constitute an ensemble of 14–16 bilateral pairs of motion-detecting neurons projecting from the lobula (third optic neuropile) to the midbrain, with receptive fields that are distributed over the extensive visual field of the animal's eye. Considering the crab Neohelice (previously Chasmagnathus) granulata, here we describe the response of these neurons to looming stimuli that simulate objects approaching the animal on a collision course. We found that the peak firing time of MLG1 acts as an angular threshold detector signaling, with a delay of δ = 35 ms, the time at which an object reaches a fixed angular threshold of 49°. Using in vivo intracellular recordings, we detected the existence of excitatory and inhibitory synaptic currents that shape the neural response. Other functional features identified in the MLG1 neurons were phasic responses at the beginning of the approach, a relation between the stimulus angular velocity and the excitation delay, and a mapping between membrane potential and firing frequency. Using this information, we propose a biophysical model of the mechanisms that regulate the encoding of looming stimuli. Furthermore, we found that the parameter encoded by the MLG1 firing frequency during the approach is the stimulus angular velocity. The proposed model fits the experimental results and predicts the neural response to a qualitatively different stimulus. Based on these and previous results, we propose that the MLG1 neuron system acts as a directional coding system for collision avoidance.
publishDate 2014
dc.date.none.fl_str_mv 2014-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/31831
Oliva, Damian Ernesto; Tomsic, Daniel; Computation of object approach by a system of visual motion-sensitive neurons in the crab Neohelice; American Physiological Society; Journal of Neurophysiology; 112; 6; 9-2014; 1477-1490
0022-3077
CONICET Digital
CONICET
url http://hdl.handle.net/11336/31831
identifier_str_mv Oliva, Damian Ernesto; Tomsic, Daniel; Computation of object approach by a system of visual motion-sensitive neurons in the crab Neohelice; American Physiological Society; Journal of Neurophysiology; 112; 6; 9-2014; 1477-1490
0022-3077
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.physiology.org/doi/abs/10.1152/jn.00921.2013
info:eu-repo/semantics/altIdentifier/doi/10.1152/jn.00921.2013
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physiological Society
publisher.none.fl_str_mv American Physiological Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613932769083392
score 13.070432