SPH numerical modelling of landslide movements as coupled two-phase flows with a new solution for the interaction term

Autores
Moussavi Tayyebi, Saeid; Pastor, Manuel; Stickle, Miguel Martin; Yagüe, Ángel; Manzanal, Diego; Molinos, Miguel; Navas, Pedro
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper, the theoretical framework is a depth-integrated two-phase model capable of considering many essential physical aspects such as reproducing the propagation of debris flows with soil permeability ranging from high to low and considering the pore-water pressure evolution. In this model, the pore fluid is described by an additional set of depth-integrated balance equations in order to take into account the velocity of pore fluid. The model employs a frictional rheological law for the granular material, and the interstitial fluid is treated as a Newtonian fluid. A drag law describes the interaction between interstitial fluid and grains. The variables of permeability, porosity, and drag force are included in the governing equations to consider the interaction between the phases. This paper aims to extend a generalized two-phase depth-integrated model to enhance the description of the interaction between the two phases and their respective movements. It allows us to increase our understanding of the mechanism behind natural rapid landslides. To evaluate the developed approach, a set of dam-break problems has been performed. These simulations provide interesting information in simple and controlled situations on the landslide propagations with different degrees of soil permeability and the interaction between solid and fluid phases. The extended model has also been applied to simulate the dynamics of the Acheron rock avalanche, which is an appropriate benchmark to examine the applicability of the model to real cases.
Fil: Moussavi Tayyebi, Saeid. Universidad Politécnica de Madrid; España
Fil: Pastor, Manuel. Universidad Politécnica de Madrid; España
Fil: Stickle, Miguel Martin. Universidad Politécnica de Madrid; España
Fil: Yagüe, Ángel. Universidad Politécnica de Madrid; España
Fil: Manzanal, Diego. Universidad Politécnica de Madrid; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina
Fil: Molinos, Miguel. Universidad Politécnica de Madrid; España
Fil: Navas, Pedro. Universidad Politécnica de Madrid; España
Materia
ACHERON ROCK AVALANCHE
COUPLE PROBLEMS
DAM-BREAK
DEPTH INTEGRATED MODEL
INTERACTION FORCE
PERMEABILITY
SPH
TWO PHASES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/213825

id CONICETDig_7e7a2872626e80f56215dae8729270a4
oai_identifier_str oai:ri.conicet.gov.ar:11336/213825
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling SPH numerical modelling of landslide movements as coupled two-phase flows with a new solution for the interaction termMoussavi Tayyebi, SaeidPastor, ManuelStickle, Miguel MartinYagüe, ÁngelManzanal, DiegoMolinos, MiguelNavas, PedroACHERON ROCK AVALANCHECOUPLE PROBLEMSDAM-BREAKDEPTH INTEGRATED MODELINTERACTION FORCEPERMEABILITYSPHTWO PHASEShttps://purl.org/becyt/ford/2.1https://purl.org/becyt/ford/2In this paper, the theoretical framework is a depth-integrated two-phase model capable of considering many essential physical aspects such as reproducing the propagation of debris flows with soil permeability ranging from high to low and considering the pore-water pressure evolution. In this model, the pore fluid is described by an additional set of depth-integrated balance equations in order to take into account the velocity of pore fluid. The model employs a frictional rheological law for the granular material, and the interstitial fluid is treated as a Newtonian fluid. A drag law describes the interaction between interstitial fluid and grains. The variables of permeability, porosity, and drag force are included in the governing equations to consider the interaction between the phases. This paper aims to extend a generalized two-phase depth-integrated model to enhance the description of the interaction between the two phases and their respective movements. It allows us to increase our understanding of the mechanism behind natural rapid landslides. To evaluate the developed approach, a set of dam-break problems has been performed. These simulations provide interesting information in simple and controlled situations on the landslide propagations with different degrees of soil permeability and the interaction between solid and fluid phases. The extended model has also been applied to simulate the dynamics of the Acheron rock avalanche, which is an appropriate benchmark to examine the applicability of the model to real cases.Fil: Moussavi Tayyebi, Saeid. Universidad Politécnica de Madrid; EspañaFil: Pastor, Manuel. Universidad Politécnica de Madrid; EspañaFil: Stickle, Miguel Martin. Universidad Politécnica de Madrid; EspañaFil: Yagüe, Ángel. Universidad Politécnica de Madrid; EspañaFil: Manzanal, Diego. Universidad Politécnica de Madrid; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; ArgentinaFil: Molinos, Miguel. Universidad Politécnica de Madrid; EspañaFil: Navas, Pedro. Universidad Politécnica de Madrid; EspañaGauthier-Villars/Editions Elsevier2022-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/213825Moussavi Tayyebi, Saeid; Pastor, Manuel; Stickle, Miguel Martin; Yagüe, Ángel; Manzanal, Diego; et al.; SPH numerical modelling of landslide movements as coupled two-phase flows with a new solution for the interaction term; Gauthier-Villars/Editions Elsevier; European Journal of Mechanics B-fluids; 96; 11-2022; 1-140997-7546CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.euromechflu.2022.06.002info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:10:30Zoai:ri.conicet.gov.ar:11336/213825instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:10:31.061CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv SPH numerical modelling of landslide movements as coupled two-phase flows with a new solution for the interaction term
title SPH numerical modelling of landslide movements as coupled two-phase flows with a new solution for the interaction term
spellingShingle SPH numerical modelling of landslide movements as coupled two-phase flows with a new solution for the interaction term
Moussavi Tayyebi, Saeid
ACHERON ROCK AVALANCHE
COUPLE PROBLEMS
DAM-BREAK
DEPTH INTEGRATED MODEL
INTERACTION FORCE
PERMEABILITY
SPH
TWO PHASES
title_short SPH numerical modelling of landslide movements as coupled two-phase flows with a new solution for the interaction term
title_full SPH numerical modelling of landslide movements as coupled two-phase flows with a new solution for the interaction term
title_fullStr SPH numerical modelling of landslide movements as coupled two-phase flows with a new solution for the interaction term
title_full_unstemmed SPH numerical modelling of landslide movements as coupled two-phase flows with a new solution for the interaction term
title_sort SPH numerical modelling of landslide movements as coupled two-phase flows with a new solution for the interaction term
dc.creator.none.fl_str_mv Moussavi Tayyebi, Saeid
Pastor, Manuel
Stickle, Miguel Martin
Yagüe, Ángel
Manzanal, Diego
Molinos, Miguel
Navas, Pedro
author Moussavi Tayyebi, Saeid
author_facet Moussavi Tayyebi, Saeid
Pastor, Manuel
Stickle, Miguel Martin
Yagüe, Ángel
Manzanal, Diego
Molinos, Miguel
Navas, Pedro
author_role author
author2 Pastor, Manuel
Stickle, Miguel Martin
Yagüe, Ángel
Manzanal, Diego
Molinos, Miguel
Navas, Pedro
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv ACHERON ROCK AVALANCHE
COUPLE PROBLEMS
DAM-BREAK
DEPTH INTEGRATED MODEL
INTERACTION FORCE
PERMEABILITY
SPH
TWO PHASES
topic ACHERON ROCK AVALANCHE
COUPLE PROBLEMS
DAM-BREAK
DEPTH INTEGRATED MODEL
INTERACTION FORCE
PERMEABILITY
SPH
TWO PHASES
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.1
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv In this paper, the theoretical framework is a depth-integrated two-phase model capable of considering many essential physical aspects such as reproducing the propagation of debris flows with soil permeability ranging from high to low and considering the pore-water pressure evolution. In this model, the pore fluid is described by an additional set of depth-integrated balance equations in order to take into account the velocity of pore fluid. The model employs a frictional rheological law for the granular material, and the interstitial fluid is treated as a Newtonian fluid. A drag law describes the interaction between interstitial fluid and grains. The variables of permeability, porosity, and drag force are included in the governing equations to consider the interaction between the phases. This paper aims to extend a generalized two-phase depth-integrated model to enhance the description of the interaction between the two phases and their respective movements. It allows us to increase our understanding of the mechanism behind natural rapid landslides. To evaluate the developed approach, a set of dam-break problems has been performed. These simulations provide interesting information in simple and controlled situations on the landslide propagations with different degrees of soil permeability and the interaction between solid and fluid phases. The extended model has also been applied to simulate the dynamics of the Acheron rock avalanche, which is an appropriate benchmark to examine the applicability of the model to real cases.
Fil: Moussavi Tayyebi, Saeid. Universidad Politécnica de Madrid; España
Fil: Pastor, Manuel. Universidad Politécnica de Madrid; España
Fil: Stickle, Miguel Martin. Universidad Politécnica de Madrid; España
Fil: Yagüe, Ángel. Universidad Politécnica de Madrid; España
Fil: Manzanal, Diego. Universidad Politécnica de Madrid; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina
Fil: Molinos, Miguel. Universidad Politécnica de Madrid; España
Fil: Navas, Pedro. Universidad Politécnica de Madrid; España
description In this paper, the theoretical framework is a depth-integrated two-phase model capable of considering many essential physical aspects such as reproducing the propagation of debris flows with soil permeability ranging from high to low and considering the pore-water pressure evolution. In this model, the pore fluid is described by an additional set of depth-integrated balance equations in order to take into account the velocity of pore fluid. The model employs a frictional rheological law for the granular material, and the interstitial fluid is treated as a Newtonian fluid. A drag law describes the interaction between interstitial fluid and grains. The variables of permeability, porosity, and drag force are included in the governing equations to consider the interaction between the phases. This paper aims to extend a generalized two-phase depth-integrated model to enhance the description of the interaction between the two phases and their respective movements. It allows us to increase our understanding of the mechanism behind natural rapid landslides. To evaluate the developed approach, a set of dam-break problems has been performed. These simulations provide interesting information in simple and controlled situations on the landslide propagations with different degrees of soil permeability and the interaction between solid and fluid phases. The extended model has also been applied to simulate the dynamics of the Acheron rock avalanche, which is an appropriate benchmark to examine the applicability of the model to real cases.
publishDate 2022
dc.date.none.fl_str_mv 2022-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/213825
Moussavi Tayyebi, Saeid; Pastor, Manuel; Stickle, Miguel Martin; Yagüe, Ángel; Manzanal, Diego; et al.; SPH numerical modelling of landslide movements as coupled two-phase flows with a new solution for the interaction term; Gauthier-Villars/Editions Elsevier; European Journal of Mechanics B-fluids; 96; 11-2022; 1-14
0997-7546
CONICET Digital
CONICET
url http://hdl.handle.net/11336/213825
identifier_str_mv Moussavi Tayyebi, Saeid; Pastor, Manuel; Stickle, Miguel Martin; Yagüe, Ángel; Manzanal, Diego; et al.; SPH numerical modelling of landslide movements as coupled two-phase flows with a new solution for the interaction term; Gauthier-Villars/Editions Elsevier; European Journal of Mechanics B-fluids; 96; 11-2022; 1-14
0997-7546
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.euromechflu.2022.06.002
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Gauthier-Villars/Editions Elsevier
publisher.none.fl_str_mv Gauthier-Villars/Editions Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613995196055552
score 13.070432