A two-phase SPH model for debris flow propagation

Autores
Pastor, M.; Yague, A.; Stickle, M.M.; Manzanal, Diego; Mira, P.
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper presents a model which can be used for fast landslides where coupling between solid and pore fluid plays a fundamental role. The proposed model is able to describe debris flows where the difference of velocities between solid grains and fluid is important. The approach is based on the mathematical model proposed by Zienkiewicz and Shiomi, which is similar to those of Pitman and Le and Pudasaini. The novelty of the present work is the numerical technique used, the smoothed particle hydrodynamics (SPH). We propose to use a double set of nodes for soil and water phases, the interaction between them being described by a suitable drag law. The paper presents both mathematical and numerical models, describing the main assumptions and their limitations. Then, the model is applied to (1) a simple case where shocks and expansion waves appear, (2) a dam break problem on a horizontal plane with a frictional soil phase, and (3) a debris flow which happened in Hong Kong. The main conclusions that can be drawn from the applications are: Debris flows having 2 phases with important relative mobility present a rich structure of shocks and rarefaction waves, which has to be properly modeled. Otherwise, the model will have numerical damping or dispersion. Dambreak exercises provide interesting information in simple and controlled situations. We can see how both phases move relative to each other. Real debris flows can be simulated with the proposed model, obtaining reasonable results.
Fil: Pastor, M.. Universidad Politécnica de Madrid; España
Fil: Yague, A.. Universidad Politécnica de Madrid; España
Fil: Stickle, M.M.. Universidad Politécnica de Madrid; España
Fil: Manzanal, Diego. Universidad Politécnica de Madrid; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina
Fil: Mira, P.. Centro de Estudios y Experimentacion de Obras Publicas; España
Materia
DEBRIS FLOW
LANDSLIDE PROPAGATION
MATHEMATICAL MODEL
SPH
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/88306

id CONICETDig_673b4fc6edb9064737d2cdee415b13ba
oai_identifier_str oai:ri.conicet.gov.ar:11336/88306
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A two-phase SPH model for debris flow propagationPastor, M.Yague, A.Stickle, M.M.Manzanal, DiegoMira, P.DEBRIS FLOWLANDSLIDE PROPAGATIONMATHEMATICAL MODELSPHhttps://purl.org/becyt/ford/2.1https://purl.org/becyt/ford/2https://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1This paper presents a model which can be used for fast landslides where coupling between solid and pore fluid plays a fundamental role. The proposed model is able to describe debris flows where the difference of velocities between solid grains and fluid is important. The approach is based on the mathematical model proposed by Zienkiewicz and Shiomi, which is similar to those of Pitman and Le and Pudasaini. The novelty of the present work is the numerical technique used, the smoothed particle hydrodynamics (SPH). We propose to use a double set of nodes for soil and water phases, the interaction between them being described by a suitable drag law. The paper presents both mathematical and numerical models, describing the main assumptions and their limitations. Then, the model is applied to (1) a simple case where shocks and expansion waves appear, (2) a dam break problem on a horizontal plane with a frictional soil phase, and (3) a debris flow which happened in Hong Kong. The main conclusions that can be drawn from the applications are: Debris flows having 2 phases with important relative mobility present a rich structure of shocks and rarefaction waves, which has to be properly modeled. Otherwise, the model will have numerical damping or dispersion. Dambreak exercises provide interesting information in simple and controlled situations. We can see how both phases move relative to each other. Real debris flows can be simulated with the proposed model, obtaining reasonable results.Fil: Pastor, M.. Universidad Politécnica de Madrid; EspañaFil: Yague, A.. Universidad Politécnica de Madrid; EspañaFil: Stickle, M.M.. Universidad Politécnica de Madrid; EspañaFil: Manzanal, Diego. Universidad Politécnica de Madrid; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; ArgentinaFil: Mira, P.. Centro de Estudios y Experimentacion de Obras Publicas; EspañaJohn Wiley & Sons Ltd2018-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88306Pastor, M.; Yague, A.; Stickle, M.M.; Manzanal, Diego; Mira, P.; A two-phase SPH model for debris flow propagation; John Wiley & Sons Ltd; International Journal For Numerical And Analytical Methods In Geomechanics; 42; 3; 2-2018; 418-4480363-9061CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/full/10.1002/nag.2748info:eu-repo/semantics/altIdentifier/doi/10.1002/nag.2748info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:47:45Zoai:ri.conicet.gov.ar:11336/88306instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:47:46.292CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A two-phase SPH model for debris flow propagation
title A two-phase SPH model for debris flow propagation
spellingShingle A two-phase SPH model for debris flow propagation
Pastor, M.
DEBRIS FLOW
LANDSLIDE PROPAGATION
MATHEMATICAL MODEL
SPH
title_short A two-phase SPH model for debris flow propagation
title_full A two-phase SPH model for debris flow propagation
title_fullStr A two-phase SPH model for debris flow propagation
title_full_unstemmed A two-phase SPH model for debris flow propagation
title_sort A two-phase SPH model for debris flow propagation
dc.creator.none.fl_str_mv Pastor, M.
Yague, A.
Stickle, M.M.
Manzanal, Diego
Mira, P.
author Pastor, M.
author_facet Pastor, M.
Yague, A.
Stickle, M.M.
Manzanal, Diego
Mira, P.
author_role author
author2 Yague, A.
Stickle, M.M.
Manzanal, Diego
Mira, P.
author2_role author
author
author
author
dc.subject.none.fl_str_mv DEBRIS FLOW
LANDSLIDE PROPAGATION
MATHEMATICAL MODEL
SPH
topic DEBRIS FLOW
LANDSLIDE PROPAGATION
MATHEMATICAL MODEL
SPH
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.1
https://purl.org/becyt/ford/2
https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv This paper presents a model which can be used for fast landslides where coupling between solid and pore fluid plays a fundamental role. The proposed model is able to describe debris flows where the difference of velocities between solid grains and fluid is important. The approach is based on the mathematical model proposed by Zienkiewicz and Shiomi, which is similar to those of Pitman and Le and Pudasaini. The novelty of the present work is the numerical technique used, the smoothed particle hydrodynamics (SPH). We propose to use a double set of nodes for soil and water phases, the interaction between them being described by a suitable drag law. The paper presents both mathematical and numerical models, describing the main assumptions and their limitations. Then, the model is applied to (1) a simple case where shocks and expansion waves appear, (2) a dam break problem on a horizontal plane with a frictional soil phase, and (3) a debris flow which happened in Hong Kong. The main conclusions that can be drawn from the applications are: Debris flows having 2 phases with important relative mobility present a rich structure of shocks and rarefaction waves, which has to be properly modeled. Otherwise, the model will have numerical damping or dispersion. Dambreak exercises provide interesting information in simple and controlled situations. We can see how both phases move relative to each other. Real debris flows can be simulated with the proposed model, obtaining reasonable results.
Fil: Pastor, M.. Universidad Politécnica de Madrid; España
Fil: Yague, A.. Universidad Politécnica de Madrid; España
Fil: Stickle, M.M.. Universidad Politécnica de Madrid; España
Fil: Manzanal, Diego. Universidad Politécnica de Madrid; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina
Fil: Mira, P.. Centro de Estudios y Experimentacion de Obras Publicas; España
description This paper presents a model which can be used for fast landslides where coupling between solid and pore fluid plays a fundamental role. The proposed model is able to describe debris flows where the difference of velocities between solid grains and fluid is important. The approach is based on the mathematical model proposed by Zienkiewicz and Shiomi, which is similar to those of Pitman and Le and Pudasaini. The novelty of the present work is the numerical technique used, the smoothed particle hydrodynamics (SPH). We propose to use a double set of nodes for soil and water phases, the interaction between them being described by a suitable drag law. The paper presents both mathematical and numerical models, describing the main assumptions and their limitations. Then, the model is applied to (1) a simple case where shocks and expansion waves appear, (2) a dam break problem on a horizontal plane with a frictional soil phase, and (3) a debris flow which happened in Hong Kong. The main conclusions that can be drawn from the applications are: Debris flows having 2 phases with important relative mobility present a rich structure of shocks and rarefaction waves, which has to be properly modeled. Otherwise, the model will have numerical damping or dispersion. Dambreak exercises provide interesting information in simple and controlled situations. We can see how both phases move relative to each other. Real debris flows can be simulated with the proposed model, obtaining reasonable results.
publishDate 2018
dc.date.none.fl_str_mv 2018-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/88306
Pastor, M.; Yague, A.; Stickle, M.M.; Manzanal, Diego; Mira, P.; A two-phase SPH model for debris flow propagation; John Wiley & Sons Ltd; International Journal For Numerical And Analytical Methods In Geomechanics; 42; 3; 2-2018; 418-448
0363-9061
CONICET Digital
CONICET
url http://hdl.handle.net/11336/88306
identifier_str_mv Pastor, M.; Yague, A.; Stickle, M.M.; Manzanal, Diego; Mira, P.; A two-phase SPH model for debris flow propagation; John Wiley & Sons Ltd; International Journal For Numerical And Analytical Methods In Geomechanics; 42; 3; 2-2018; 418-448
0363-9061
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/full/10.1002/nag.2748
info:eu-repo/semantics/altIdentifier/doi/10.1002/nag.2748
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv John Wiley & Sons Ltd
publisher.none.fl_str_mv John Wiley & Sons Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613487925395456
score 13.070432