Comment on “`Striped' rectangular rigid box with Hermitian and non-Hermitian PT symmetric potentials” [J. Math. Phys. 62, 102102 (2021)]

Autores
Fernández, Francisco Marcelo
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We show that the two-dimensional quantum-mechanical model proposed by Kulkarni and Pathak [J. Math. Phys. 62, 102102 (2021)] is separable. Consequently, instead of solving a two-dimensional Schrödinger equation, it is sufficient to solve two one-dimensional eigenvalue equations, one of which is exactly solvable. The solution to the remaining equation can be given in terms of a transcendental equation.
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Materia
TWO-DIMENSIONAL MODEL
SEPARABLE EQUATION
TWO ONE-DIMENSIONAL PROBLEMS
EXACTLY SOLVABLE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/204747

id CONICETDig_7e11d1a4297f97961e9566bb3e39f20e
oai_identifier_str oai:ri.conicet.gov.ar:11336/204747
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Comment on “`Striped' rectangular rigid box with Hermitian and non-Hermitian PT symmetric potentials” [J. Math. Phys. 62, 102102 (2021)]Fernández, Francisco MarceloTWO-DIMENSIONAL MODELSEPARABLE EQUATIONTWO ONE-DIMENSIONAL PROBLEMSEXACTLY SOLVABLEhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1We show that the two-dimensional quantum-mechanical model proposed by Kulkarni and Pathak [J. Math. Phys. 62, 102102 (2021)] is separable. Consequently, instead of solving a two-dimensional Schrödinger equation, it is sufficient to solve two one-dimensional eigenvalue equations, one of which is exactly solvable. The solution to the remaining equation can be given in terms of a transcendental equation.Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaAmerican Institute of Physics2022-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/204747Fernández, Francisco Marcelo; Comment on “`Striped' rectangular rigid box with Hermitian and non-Hermitian PT symmetric potentials” [J. Math. Phys. 62, 102102 (2021)]; American Institute of Physics; Journal of Mathematical Physics; 63; 3; 3-2022; 1-30022-2488CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/5.0082599info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/aip/jmp/article/63/3/034101/2845983/Comment-on-Striped-rectangular-rigid-box-withinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:01:09Zoai:ri.conicet.gov.ar:11336/204747instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:01:09.854CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Comment on “`Striped' rectangular rigid box with Hermitian and non-Hermitian PT symmetric potentials” [J. Math. Phys. 62, 102102 (2021)]
title Comment on “`Striped' rectangular rigid box with Hermitian and non-Hermitian PT symmetric potentials” [J. Math. Phys. 62, 102102 (2021)]
spellingShingle Comment on “`Striped' rectangular rigid box with Hermitian and non-Hermitian PT symmetric potentials” [J. Math. Phys. 62, 102102 (2021)]
Fernández, Francisco Marcelo
TWO-DIMENSIONAL MODEL
SEPARABLE EQUATION
TWO ONE-DIMENSIONAL PROBLEMS
EXACTLY SOLVABLE
title_short Comment on “`Striped' rectangular rigid box with Hermitian and non-Hermitian PT symmetric potentials” [J. Math. Phys. 62, 102102 (2021)]
title_full Comment on “`Striped' rectangular rigid box with Hermitian and non-Hermitian PT symmetric potentials” [J. Math. Phys. 62, 102102 (2021)]
title_fullStr Comment on “`Striped' rectangular rigid box with Hermitian and non-Hermitian PT symmetric potentials” [J. Math. Phys. 62, 102102 (2021)]
title_full_unstemmed Comment on “`Striped' rectangular rigid box with Hermitian and non-Hermitian PT symmetric potentials” [J. Math. Phys. 62, 102102 (2021)]
title_sort Comment on “`Striped' rectangular rigid box with Hermitian and non-Hermitian PT symmetric potentials” [J. Math. Phys. 62, 102102 (2021)]
dc.creator.none.fl_str_mv Fernández, Francisco Marcelo
author Fernández, Francisco Marcelo
author_facet Fernández, Francisco Marcelo
author_role author
dc.subject.none.fl_str_mv TWO-DIMENSIONAL MODEL
SEPARABLE EQUATION
TWO ONE-DIMENSIONAL PROBLEMS
EXACTLY SOLVABLE
topic TWO-DIMENSIONAL MODEL
SEPARABLE EQUATION
TWO ONE-DIMENSIONAL PROBLEMS
EXACTLY SOLVABLE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We show that the two-dimensional quantum-mechanical model proposed by Kulkarni and Pathak [J. Math. Phys. 62, 102102 (2021)] is separable. Consequently, instead of solving a two-dimensional Schrödinger equation, it is sufficient to solve two one-dimensional eigenvalue equations, one of which is exactly solvable. The solution to the remaining equation can be given in terms of a transcendental equation.
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
description We show that the two-dimensional quantum-mechanical model proposed by Kulkarni and Pathak [J. Math. Phys. 62, 102102 (2021)] is separable. Consequently, instead of solving a two-dimensional Schrödinger equation, it is sufficient to solve two one-dimensional eigenvalue equations, one of which is exactly solvable. The solution to the remaining equation can be given in terms of a transcendental equation.
publishDate 2022
dc.date.none.fl_str_mv 2022-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/204747
Fernández, Francisco Marcelo; Comment on “`Striped' rectangular rigid box with Hermitian and non-Hermitian PT symmetric potentials” [J. Math. Phys. 62, 102102 (2021)]; American Institute of Physics; Journal of Mathematical Physics; 63; 3; 3-2022; 1-3
0022-2488
CONICET Digital
CONICET
url http://hdl.handle.net/11336/204747
identifier_str_mv Fernández, Francisco Marcelo; Comment on “`Striped' rectangular rigid box with Hermitian and non-Hermitian PT symmetric potentials” [J. Math. Phys. 62, 102102 (2021)]; American Institute of Physics; Journal of Mathematical Physics; 63; 3; 3-2022; 1-3
0022-2488
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1063/5.0082599
info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/aip/jmp/article/63/3/034101/2845983/Comment-on-Striped-rectangular-rigid-box-with
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606306916663296
score 13.043088