Comment on “`Striped' rectangular rigid box with Hermitian and non-Hermitian PT symmetric potentials” [J. Math. Phys. 62, 102102 (2021)]
- Autores
- Fernández, Francisco Marcelo
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We show that the two-dimensional quantum-mechanical model proposed by Kulkarni and Pathak [J. Math. Phys. 62, 102102 (2021)] is separable. Consequently, instead of solving a two-dimensional Schrödinger equation, it is sufficient to solve two one-dimensional eigenvalue equations, one of which is exactly solvable. The solution to the remaining equation can be given in terms of a transcendental equation.
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina - Materia
-
TWO-DIMENSIONAL MODEL
SEPARABLE EQUATION
TWO ONE-DIMENSIONAL PROBLEMS
EXACTLY SOLVABLE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/204747
Ver los metadatos del registro completo
id |
CONICETDig_7e11d1a4297f97961e9566bb3e39f20e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/204747 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Comment on “`Striped' rectangular rigid box with Hermitian and non-Hermitian PT symmetric potentials” [J. Math. Phys. 62, 102102 (2021)]Fernández, Francisco MarceloTWO-DIMENSIONAL MODELSEPARABLE EQUATIONTWO ONE-DIMENSIONAL PROBLEMSEXACTLY SOLVABLEhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1We show that the two-dimensional quantum-mechanical model proposed by Kulkarni and Pathak [J. Math. Phys. 62, 102102 (2021)] is separable. Consequently, instead of solving a two-dimensional Schrödinger equation, it is sufficient to solve two one-dimensional eigenvalue equations, one of which is exactly solvable. The solution to the remaining equation can be given in terms of a transcendental equation.Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaAmerican Institute of Physics2022-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/204747Fernández, Francisco Marcelo; Comment on “`Striped' rectangular rigid box with Hermitian and non-Hermitian PT symmetric potentials” [J. Math. Phys. 62, 102102 (2021)]; American Institute of Physics; Journal of Mathematical Physics; 63; 3; 3-2022; 1-30022-2488CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/5.0082599info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/aip/jmp/article/63/3/034101/2845983/Comment-on-Striped-rectangular-rigid-box-withinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:01:09Zoai:ri.conicet.gov.ar:11336/204747instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:01:09.854CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Comment on “`Striped' rectangular rigid box with Hermitian and non-Hermitian PT symmetric potentials” [J. Math. Phys. 62, 102102 (2021)] |
title |
Comment on “`Striped' rectangular rigid box with Hermitian and non-Hermitian PT symmetric potentials” [J. Math. Phys. 62, 102102 (2021)] |
spellingShingle |
Comment on “`Striped' rectangular rigid box with Hermitian and non-Hermitian PT symmetric potentials” [J. Math. Phys. 62, 102102 (2021)] Fernández, Francisco Marcelo TWO-DIMENSIONAL MODEL SEPARABLE EQUATION TWO ONE-DIMENSIONAL PROBLEMS EXACTLY SOLVABLE |
title_short |
Comment on “`Striped' rectangular rigid box with Hermitian and non-Hermitian PT symmetric potentials” [J. Math. Phys. 62, 102102 (2021)] |
title_full |
Comment on “`Striped' rectangular rigid box with Hermitian and non-Hermitian PT symmetric potentials” [J. Math. Phys. 62, 102102 (2021)] |
title_fullStr |
Comment on “`Striped' rectangular rigid box with Hermitian and non-Hermitian PT symmetric potentials” [J. Math. Phys. 62, 102102 (2021)] |
title_full_unstemmed |
Comment on “`Striped' rectangular rigid box with Hermitian and non-Hermitian PT symmetric potentials” [J. Math. Phys. 62, 102102 (2021)] |
title_sort |
Comment on “`Striped' rectangular rigid box with Hermitian and non-Hermitian PT symmetric potentials” [J. Math. Phys. 62, 102102 (2021)] |
dc.creator.none.fl_str_mv |
Fernández, Francisco Marcelo |
author |
Fernández, Francisco Marcelo |
author_facet |
Fernández, Francisco Marcelo |
author_role |
author |
dc.subject.none.fl_str_mv |
TWO-DIMENSIONAL MODEL SEPARABLE EQUATION TWO ONE-DIMENSIONAL PROBLEMS EXACTLY SOLVABLE |
topic |
TWO-DIMENSIONAL MODEL SEPARABLE EQUATION TWO ONE-DIMENSIONAL PROBLEMS EXACTLY SOLVABLE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We show that the two-dimensional quantum-mechanical model proposed by Kulkarni and Pathak [J. Math. Phys. 62, 102102 (2021)] is separable. Consequently, instead of solving a two-dimensional Schrödinger equation, it is sufficient to solve two one-dimensional eigenvalue equations, one of which is exactly solvable. The solution to the remaining equation can be given in terms of a transcendental equation. Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina |
description |
We show that the two-dimensional quantum-mechanical model proposed by Kulkarni and Pathak [J. Math. Phys. 62, 102102 (2021)] is separable. Consequently, instead of solving a two-dimensional Schrödinger equation, it is sufficient to solve two one-dimensional eigenvalue equations, one of which is exactly solvable. The solution to the remaining equation can be given in terms of a transcendental equation. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/204747 Fernández, Francisco Marcelo; Comment on “`Striped' rectangular rigid box with Hermitian and non-Hermitian PT symmetric potentials” [J. Math. Phys. 62, 102102 (2021)]; American Institute of Physics; Journal of Mathematical Physics; 63; 3; 3-2022; 1-3 0022-2488 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/204747 |
identifier_str_mv |
Fernández, Francisco Marcelo; Comment on “`Striped' rectangular rigid box with Hermitian and non-Hermitian PT symmetric potentials” [J. Math. Phys. 62, 102102 (2021)]; American Institute of Physics; Journal of Mathematical Physics; 63; 3; 3-2022; 1-3 0022-2488 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1063/5.0082599 info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/aip/jmp/article/63/3/034101/2845983/Comment-on-Striped-rectangular-rigid-box-with |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606306916663296 |
score |
13.043088 |