Landslide change detection based on Multi-Temporal airborne LIDAR-derived DEMs

Autores
Mora, Omar E.; Lenzano, María Gabriela; Toth, Charles Karoly; Grejner-Brzezinska, Dorota A.; Fayne, Jessica V.
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Remote sensing technologies have seen extraordinary improvements in both spatial resolution and accuracy recently. In particular, airborne laser scanning systems can now provide data for surface modeling with unprecedented resolution and accuracy, which can effectively support the detection of sub-meter surface features, vital for landslide mapping. Also, the easy repeatability of data acquisition offers the opportunity to monitor temporal surface changes, which are essential to identifying developing or active slides. Specific methods are needed to detect and map surface changes due to landslide activities. In this paper, we present a methodology that is based on fusing probabilistic change detection and landslide surface feature extraction utilizing multi-temporal Light Detection and Ranging (LiDAR) derived Digital Elevation Models (DEMs) to map surface changes demonstrating landslide activity. The proposed method was tested in an area with numerous slides ranging from 200 m2 to 27,000 m2 in area under low vegetation and tree cover, Zanesville, Ohio, USA. The surface changes observed are probabilistically evaluated to determine the likelihood of the changes being landslide activity related. Next, based on surface features, a Support Vector Machine (SVM) quantifies and maps the topographic signatures of landslides in the entire area. Finally, these two processes are fused to detect landslide prone changes. The results demonstrate that 53 out of 80 inventory mapped landslides were identified using this method. Additionally, some areas that were not mapped in the inventory map displayed changes that are likely to be developing landslides.
Fil: Mora, Omar E.. California State Polytechnic University; Estados Unidos
Fil: Lenzano, María Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina
Fil: Toth, Charles Karoly. Ohio State University; Estados Unidos
Fil: Grejner-Brzezinska, Dorota A.. Ohio State University; Estados Unidos
Fil: Fayne, Jessica V.. University of California at Los Angeles; Estados Unidos
Materia
CHANGE DETECTION
DEM
FEATURE EXTRACTION
LANDSLIDE
LIDAR
MULTI-TEMPORAL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/87293

id CONICETDig_4ac95b0db3cfa2ac551ed4e9346626fd
oai_identifier_str oai:ri.conicet.gov.ar:11336/87293
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Landslide change detection based on Multi-Temporal airborne LIDAR-derived DEMsMora, Omar E.Lenzano, María GabrielaToth, Charles KarolyGrejner-Brzezinska, Dorota A.Fayne, Jessica V.CHANGE DETECTIONDEMFEATURE EXTRACTIONLANDSLIDELIDARMULTI-TEMPORALhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Remote sensing technologies have seen extraordinary improvements in both spatial resolution and accuracy recently. In particular, airborne laser scanning systems can now provide data for surface modeling with unprecedented resolution and accuracy, which can effectively support the detection of sub-meter surface features, vital for landslide mapping. Also, the easy repeatability of data acquisition offers the opportunity to monitor temporal surface changes, which are essential to identifying developing or active slides. Specific methods are needed to detect and map surface changes due to landslide activities. In this paper, we present a methodology that is based on fusing probabilistic change detection and landslide surface feature extraction utilizing multi-temporal Light Detection and Ranging (LiDAR) derived Digital Elevation Models (DEMs) to map surface changes demonstrating landslide activity. The proposed method was tested in an area with numerous slides ranging from 200 m2 to 27,000 m2 in area under low vegetation and tree cover, Zanesville, Ohio, USA. The surface changes observed are probabilistically evaluated to determine the likelihood of the changes being landslide activity related. Next, based on surface features, a Support Vector Machine (SVM) quantifies and maps the topographic signatures of landslides in the entire area. Finally, these two processes are fused to detect landslide prone changes. The results demonstrate that 53 out of 80 inventory mapped landslides were identified using this method. Additionally, some areas that were not mapped in the inventory map displayed changes that are likely to be developing landslides.Fil: Mora, Omar E.. California State Polytechnic University; Estados UnidosFil: Lenzano, María Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Toth, Charles Karoly. Ohio State University; Estados UnidosFil: Grejner-Brzezinska, Dorota A.. Ohio State University; Estados UnidosFil: Fayne, Jessica V.. University of California at Los Angeles; Estados UnidosMolecular Diversity Preservation International2018-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/87293Mora, Omar E.; Lenzano, María Gabriela; Toth, Charles Karoly; Grejner-Brzezinska, Dorota A.; Fayne, Jessica V.; Landslide change detection based on Multi-Temporal airborne LIDAR-derived DEMs; Molecular Diversity Preservation International; Geosciences; 8; 1; 1-2018; 1-192076-3263CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/geosciences8010023info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2076-3263/8/1/23info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:58:52Zoai:ri.conicet.gov.ar:11336/87293instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:58:52.407CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Landslide change detection based on Multi-Temporal airborne LIDAR-derived DEMs
title Landslide change detection based on Multi-Temporal airborne LIDAR-derived DEMs
spellingShingle Landslide change detection based on Multi-Temporal airborne LIDAR-derived DEMs
Mora, Omar E.
CHANGE DETECTION
DEM
FEATURE EXTRACTION
LANDSLIDE
LIDAR
MULTI-TEMPORAL
title_short Landslide change detection based on Multi-Temporal airborne LIDAR-derived DEMs
title_full Landslide change detection based on Multi-Temporal airborne LIDAR-derived DEMs
title_fullStr Landslide change detection based on Multi-Temporal airborne LIDAR-derived DEMs
title_full_unstemmed Landslide change detection based on Multi-Temporal airborne LIDAR-derived DEMs
title_sort Landslide change detection based on Multi-Temporal airborne LIDAR-derived DEMs
dc.creator.none.fl_str_mv Mora, Omar E.
Lenzano, María Gabriela
Toth, Charles Karoly
Grejner-Brzezinska, Dorota A.
Fayne, Jessica V.
author Mora, Omar E.
author_facet Mora, Omar E.
Lenzano, María Gabriela
Toth, Charles Karoly
Grejner-Brzezinska, Dorota A.
Fayne, Jessica V.
author_role author
author2 Lenzano, María Gabriela
Toth, Charles Karoly
Grejner-Brzezinska, Dorota A.
Fayne, Jessica V.
author2_role author
author
author
author
dc.subject.none.fl_str_mv CHANGE DETECTION
DEM
FEATURE EXTRACTION
LANDSLIDE
LIDAR
MULTI-TEMPORAL
topic CHANGE DETECTION
DEM
FEATURE EXTRACTION
LANDSLIDE
LIDAR
MULTI-TEMPORAL
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.11
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Remote sensing technologies have seen extraordinary improvements in both spatial resolution and accuracy recently. In particular, airborne laser scanning systems can now provide data for surface modeling with unprecedented resolution and accuracy, which can effectively support the detection of sub-meter surface features, vital for landslide mapping. Also, the easy repeatability of data acquisition offers the opportunity to monitor temporal surface changes, which are essential to identifying developing or active slides. Specific methods are needed to detect and map surface changes due to landslide activities. In this paper, we present a methodology that is based on fusing probabilistic change detection and landslide surface feature extraction utilizing multi-temporal Light Detection and Ranging (LiDAR) derived Digital Elevation Models (DEMs) to map surface changes demonstrating landslide activity. The proposed method was tested in an area with numerous slides ranging from 200 m2 to 27,000 m2 in area under low vegetation and tree cover, Zanesville, Ohio, USA. The surface changes observed are probabilistically evaluated to determine the likelihood of the changes being landslide activity related. Next, based on surface features, a Support Vector Machine (SVM) quantifies and maps the topographic signatures of landslides in the entire area. Finally, these two processes are fused to detect landslide prone changes. The results demonstrate that 53 out of 80 inventory mapped landslides were identified using this method. Additionally, some areas that were not mapped in the inventory map displayed changes that are likely to be developing landslides.
Fil: Mora, Omar E.. California State Polytechnic University; Estados Unidos
Fil: Lenzano, María Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina
Fil: Toth, Charles Karoly. Ohio State University; Estados Unidos
Fil: Grejner-Brzezinska, Dorota A.. Ohio State University; Estados Unidos
Fil: Fayne, Jessica V.. University of California at Los Angeles; Estados Unidos
description Remote sensing technologies have seen extraordinary improvements in both spatial resolution and accuracy recently. In particular, airborne laser scanning systems can now provide data for surface modeling with unprecedented resolution and accuracy, which can effectively support the detection of sub-meter surface features, vital for landslide mapping. Also, the easy repeatability of data acquisition offers the opportunity to monitor temporal surface changes, which are essential to identifying developing or active slides. Specific methods are needed to detect and map surface changes due to landslide activities. In this paper, we present a methodology that is based on fusing probabilistic change detection and landslide surface feature extraction utilizing multi-temporal Light Detection and Ranging (LiDAR) derived Digital Elevation Models (DEMs) to map surface changes demonstrating landslide activity. The proposed method was tested in an area with numerous slides ranging from 200 m2 to 27,000 m2 in area under low vegetation and tree cover, Zanesville, Ohio, USA. The surface changes observed are probabilistically evaluated to determine the likelihood of the changes being landslide activity related. Next, based on surface features, a Support Vector Machine (SVM) quantifies and maps the topographic signatures of landslides in the entire area. Finally, these two processes are fused to detect landslide prone changes. The results demonstrate that 53 out of 80 inventory mapped landslides were identified using this method. Additionally, some areas that were not mapped in the inventory map displayed changes that are likely to be developing landslides.
publishDate 2018
dc.date.none.fl_str_mv 2018-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/87293
Mora, Omar E.; Lenzano, María Gabriela; Toth, Charles Karoly; Grejner-Brzezinska, Dorota A.; Fayne, Jessica V.; Landslide change detection based on Multi-Temporal airborne LIDAR-derived DEMs; Molecular Diversity Preservation International; Geosciences; 8; 1; 1-2018; 1-19
2076-3263
CONICET Digital
CONICET
url http://hdl.handle.net/11336/87293
identifier_str_mv Mora, Omar E.; Lenzano, María Gabriela; Toth, Charles Karoly; Grejner-Brzezinska, Dorota A.; Fayne, Jessica V.; Landslide change detection based on Multi-Temporal airborne LIDAR-derived DEMs; Molecular Diversity Preservation International; Geosciences; 8; 1; 1-2018; 1-19
2076-3263
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.3390/geosciences8010023
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2076-3263/8/1/23
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Molecular Diversity Preservation International
publisher.none.fl_str_mv Molecular Diversity Preservation International
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782305104822272
score 12.982451