Credit risk contagion and systemic risk on networks

Autores
Dolfin, Marina; Knopoff, Damián Alejandro; Limosani, Michele; Xibilia, Maria Gabriella
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper proposes a model of the dynamics of credit contagion through non-performing loans on financial networks. Credit risk contagion is modeled in the context of the classical SIS (Susceptibles-Infected-Susceptibles) epidemic processes on networks but with a fundamental novelty. In fact, we assume the presence of two different classes of infected agents, and then we differentiate the dynamics of assets subject to idiosyncratic risk from those affected by systemic risk by adopting a SIIS (Susceptible-Infected1-Infected2-Susceptible) model. In the recent literature in this field, the effect of systemic credit risk on the performance of the financial network is a hot topic. We perform numerical simulations intended to explore the roles played by two different network structures on the long-term behavior of assets affected by systemic risk in order to analyze the effect of the topology of the underlying network structure on the spreading of systemic risk on the structure. Random graphs, i.e., the Erdös-Rényi model, are considered "benchmark" network structures while core-periphery structures are often indicated in the literature as idealized structures, although they are able to capture interesting, specific features of real-world financial networks. Moreover, as a matter of comparison, we also perform numerical experiments on small-world networks.
Fil: Dolfin, Marina. University Of Messina. Department of Engineering; Italia
Fil: Knopoff, Damián Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Limosani, Michele. University Of Messina. Department Of Economics; Italia
Fil: Xibilia, Maria Gabriella. University Of Messina. Department Of Engineering; Italia
Materia
COMPLEX SYSTEMS
CORE-PERIPHERY NETWORKS
CREDIT RISK
EPIDEMICMODELING
RANDOMNETWORKS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/124666

id CONICETDig_7d4511d8c0daffd2b0f50f8154775b54
oai_identifier_str oai:ri.conicet.gov.ar:11336/124666
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Credit risk contagion and systemic risk on networksDolfin, MarinaKnopoff, Damián AlejandroLimosani, MicheleXibilia, Maria GabriellaCOMPLEX SYSTEMSCORE-PERIPHERY NETWORKSCREDIT RISKEPIDEMICMODELINGRANDOMNETWORKShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/5.2https://purl.org/becyt/ford/5This paper proposes a model of the dynamics of credit contagion through non-performing loans on financial networks. Credit risk contagion is modeled in the context of the classical SIS (Susceptibles-Infected-Susceptibles) epidemic processes on networks but with a fundamental novelty. In fact, we assume the presence of two different classes of infected agents, and then we differentiate the dynamics of assets subject to idiosyncratic risk from those affected by systemic risk by adopting a SIIS (Susceptible-Infected1-Infected2-Susceptible) model. In the recent literature in this field, the effect of systemic credit risk on the performance of the financial network is a hot topic. We perform numerical simulations intended to explore the roles played by two different network structures on the long-term behavior of assets affected by systemic risk in order to analyze the effect of the topology of the underlying network structure on the spreading of systemic risk on the structure. Random graphs, i.e., the Erdös-Rényi model, are considered "benchmark" network structures while core-periphery structures are often indicated in the literature as idealized structures, although they are able to capture interesting, specific features of real-world financial networks. Moreover, as a matter of comparison, we also perform numerical experiments on small-world networks.Fil: Dolfin, Marina. University Of Messina. Department of Engineering; ItaliaFil: Knopoff, Damián Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Limosani, Michele. University Of Messina. Department Of Economics; ItaliaFil: Xibilia, Maria Gabriella. University Of Messina. Department Of Engineering; ItaliaMDPI AG2019-08-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/124666Dolfin, Marina; Knopoff, Damián Alejandro; Limosani, Michele; Xibilia, Maria Gabriella; Credit risk contagion and systemic risk on networks; MDPI AG; Mathematics; 7; 8; 7-8-2019; 7132227-7390CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/math7080713info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2227-7390/7/8/713info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:38:14Zoai:ri.conicet.gov.ar:11336/124666instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:38:15.11CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Credit risk contagion and systemic risk on networks
title Credit risk contagion and systemic risk on networks
spellingShingle Credit risk contagion and systemic risk on networks
Dolfin, Marina
COMPLEX SYSTEMS
CORE-PERIPHERY NETWORKS
CREDIT RISK
EPIDEMICMODELING
RANDOMNETWORKS
title_short Credit risk contagion and systemic risk on networks
title_full Credit risk contagion and systemic risk on networks
title_fullStr Credit risk contagion and systemic risk on networks
title_full_unstemmed Credit risk contagion and systemic risk on networks
title_sort Credit risk contagion and systemic risk on networks
dc.creator.none.fl_str_mv Dolfin, Marina
Knopoff, Damián Alejandro
Limosani, Michele
Xibilia, Maria Gabriella
author Dolfin, Marina
author_facet Dolfin, Marina
Knopoff, Damián Alejandro
Limosani, Michele
Xibilia, Maria Gabriella
author_role author
author2 Knopoff, Damián Alejandro
Limosani, Michele
Xibilia, Maria Gabriella
author2_role author
author
author
dc.subject.none.fl_str_mv COMPLEX SYSTEMS
CORE-PERIPHERY NETWORKS
CREDIT RISK
EPIDEMICMODELING
RANDOMNETWORKS
topic COMPLEX SYSTEMS
CORE-PERIPHERY NETWORKS
CREDIT RISK
EPIDEMICMODELING
RANDOMNETWORKS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/5.2
https://purl.org/becyt/ford/5
dc.description.none.fl_txt_mv This paper proposes a model of the dynamics of credit contagion through non-performing loans on financial networks. Credit risk contagion is modeled in the context of the classical SIS (Susceptibles-Infected-Susceptibles) epidemic processes on networks but with a fundamental novelty. In fact, we assume the presence of two different classes of infected agents, and then we differentiate the dynamics of assets subject to idiosyncratic risk from those affected by systemic risk by adopting a SIIS (Susceptible-Infected1-Infected2-Susceptible) model. In the recent literature in this field, the effect of systemic credit risk on the performance of the financial network is a hot topic. We perform numerical simulations intended to explore the roles played by two different network structures on the long-term behavior of assets affected by systemic risk in order to analyze the effect of the topology of the underlying network structure on the spreading of systemic risk on the structure. Random graphs, i.e., the Erdös-Rényi model, are considered "benchmark" network structures while core-periphery structures are often indicated in the literature as idealized structures, although they are able to capture interesting, specific features of real-world financial networks. Moreover, as a matter of comparison, we also perform numerical experiments on small-world networks.
Fil: Dolfin, Marina. University Of Messina. Department of Engineering; Italia
Fil: Knopoff, Damián Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Limosani, Michele. University Of Messina. Department Of Economics; Italia
Fil: Xibilia, Maria Gabriella. University Of Messina. Department Of Engineering; Italia
description This paper proposes a model of the dynamics of credit contagion through non-performing loans on financial networks. Credit risk contagion is modeled in the context of the classical SIS (Susceptibles-Infected-Susceptibles) epidemic processes on networks but with a fundamental novelty. In fact, we assume the presence of two different classes of infected agents, and then we differentiate the dynamics of assets subject to idiosyncratic risk from those affected by systemic risk by adopting a SIIS (Susceptible-Infected1-Infected2-Susceptible) model. In the recent literature in this field, the effect of systemic credit risk on the performance of the financial network is a hot topic. We perform numerical simulations intended to explore the roles played by two different network structures on the long-term behavior of assets affected by systemic risk in order to analyze the effect of the topology of the underlying network structure on the spreading of systemic risk on the structure. Random graphs, i.e., the Erdös-Rényi model, are considered "benchmark" network structures while core-periphery structures are often indicated in the literature as idealized structures, although they are able to capture interesting, specific features of real-world financial networks. Moreover, as a matter of comparison, we also perform numerical experiments on small-world networks.
publishDate 2019
dc.date.none.fl_str_mv 2019-08-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/124666
Dolfin, Marina; Knopoff, Damián Alejandro; Limosani, Michele; Xibilia, Maria Gabriella; Credit risk contagion and systemic risk on networks; MDPI AG; Mathematics; 7; 8; 7-8-2019; 713
2227-7390
CONICET Digital
CONICET
url http://hdl.handle.net/11336/124666
identifier_str_mv Dolfin, Marina; Knopoff, Damián Alejandro; Limosani, Michele; Xibilia, Maria Gabriella; Credit risk contagion and systemic risk on networks; MDPI AG; Mathematics; 7; 8; 7-8-2019; 713
2227-7390
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.3390/math7080713
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2227-7390/7/8/713
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv MDPI AG
publisher.none.fl_str_mv MDPI AG
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083501683638272
score 13.22299