Credit risk contagion and systemic risk on networks
- Autores
- Dolfin, Marina; Knopoff, Damián Alejandro; Limosani, Michele; Xibilia, Maria Gabriella
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper proposes a model of the dynamics of credit contagion through non-performing loans on financial networks. Credit risk contagion is modeled in the context of the classical SIS (Susceptibles-Infected-Susceptibles) epidemic processes on networks but with a fundamental novelty. In fact, we assume the presence of two different classes of infected agents, and then we differentiate the dynamics of assets subject to idiosyncratic risk from those affected by systemic risk by adopting a SIIS (Susceptible-Infected1-Infected2-Susceptible) model. In the recent literature in this field, the effect of systemic credit risk on the performance of the financial network is a hot topic. We perform numerical simulations intended to explore the roles played by two different network structures on the long-term behavior of assets affected by systemic risk in order to analyze the effect of the topology of the underlying network structure on the spreading of systemic risk on the structure. Random graphs, i.e., the Erdös-Rényi model, are considered "benchmark" network structures while core-periphery structures are often indicated in the literature as idealized structures, although they are able to capture interesting, specific features of real-world financial networks. Moreover, as a matter of comparison, we also perform numerical experiments on small-world networks.
Fil: Dolfin, Marina. University Of Messina. Department of Engineering; Italia
Fil: Knopoff, Damián Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Limosani, Michele. University Of Messina. Department Of Economics; Italia
Fil: Xibilia, Maria Gabriella. University Of Messina. Department Of Engineering; Italia - Materia
-
COMPLEX SYSTEMS
CORE-PERIPHERY NETWORKS
CREDIT RISK
EPIDEMICMODELING
RANDOMNETWORKS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/124666
Ver los metadatos del registro completo
id |
CONICETDig_7d4511d8c0daffd2b0f50f8154775b54 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/124666 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Credit risk contagion and systemic risk on networksDolfin, MarinaKnopoff, Damián AlejandroLimosani, MicheleXibilia, Maria GabriellaCOMPLEX SYSTEMSCORE-PERIPHERY NETWORKSCREDIT RISKEPIDEMICMODELINGRANDOMNETWORKShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/5.2https://purl.org/becyt/ford/5This paper proposes a model of the dynamics of credit contagion through non-performing loans on financial networks. Credit risk contagion is modeled in the context of the classical SIS (Susceptibles-Infected-Susceptibles) epidemic processes on networks but with a fundamental novelty. In fact, we assume the presence of two different classes of infected agents, and then we differentiate the dynamics of assets subject to idiosyncratic risk from those affected by systemic risk by adopting a SIIS (Susceptible-Infected1-Infected2-Susceptible) model. In the recent literature in this field, the effect of systemic credit risk on the performance of the financial network is a hot topic. We perform numerical simulations intended to explore the roles played by two different network structures on the long-term behavior of assets affected by systemic risk in order to analyze the effect of the topology of the underlying network structure on the spreading of systemic risk on the structure. Random graphs, i.e., the Erdös-Rényi model, are considered "benchmark" network structures while core-periphery structures are often indicated in the literature as idealized structures, although they are able to capture interesting, specific features of real-world financial networks. Moreover, as a matter of comparison, we also perform numerical experiments on small-world networks.Fil: Dolfin, Marina. University Of Messina. Department of Engineering; ItaliaFil: Knopoff, Damián Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Limosani, Michele. University Of Messina. Department Of Economics; ItaliaFil: Xibilia, Maria Gabriella. University Of Messina. Department Of Engineering; ItaliaMDPI AG2019-08-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/124666Dolfin, Marina; Knopoff, Damián Alejandro; Limosani, Michele; Xibilia, Maria Gabriella; Credit risk contagion and systemic risk on networks; MDPI AG; Mathematics; 7; 8; 7-8-2019; 7132227-7390CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/math7080713info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2227-7390/7/8/713info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:38:14Zoai:ri.conicet.gov.ar:11336/124666instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:38:15.11CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Credit risk contagion and systemic risk on networks |
title |
Credit risk contagion and systemic risk on networks |
spellingShingle |
Credit risk contagion and systemic risk on networks Dolfin, Marina COMPLEX SYSTEMS CORE-PERIPHERY NETWORKS CREDIT RISK EPIDEMICMODELING RANDOMNETWORKS |
title_short |
Credit risk contagion and systemic risk on networks |
title_full |
Credit risk contagion and systemic risk on networks |
title_fullStr |
Credit risk contagion and systemic risk on networks |
title_full_unstemmed |
Credit risk contagion and systemic risk on networks |
title_sort |
Credit risk contagion and systemic risk on networks |
dc.creator.none.fl_str_mv |
Dolfin, Marina Knopoff, Damián Alejandro Limosani, Michele Xibilia, Maria Gabriella |
author |
Dolfin, Marina |
author_facet |
Dolfin, Marina Knopoff, Damián Alejandro Limosani, Michele Xibilia, Maria Gabriella |
author_role |
author |
author2 |
Knopoff, Damián Alejandro Limosani, Michele Xibilia, Maria Gabriella |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
COMPLEX SYSTEMS CORE-PERIPHERY NETWORKS CREDIT RISK EPIDEMICMODELING RANDOMNETWORKS |
topic |
COMPLEX SYSTEMS CORE-PERIPHERY NETWORKS CREDIT RISK EPIDEMICMODELING RANDOMNETWORKS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/5.2 https://purl.org/becyt/ford/5 |
dc.description.none.fl_txt_mv |
This paper proposes a model of the dynamics of credit contagion through non-performing loans on financial networks. Credit risk contagion is modeled in the context of the classical SIS (Susceptibles-Infected-Susceptibles) epidemic processes on networks but with a fundamental novelty. In fact, we assume the presence of two different classes of infected agents, and then we differentiate the dynamics of assets subject to idiosyncratic risk from those affected by systemic risk by adopting a SIIS (Susceptible-Infected1-Infected2-Susceptible) model. In the recent literature in this field, the effect of systemic credit risk on the performance of the financial network is a hot topic. We perform numerical simulations intended to explore the roles played by two different network structures on the long-term behavior of assets affected by systemic risk in order to analyze the effect of the topology of the underlying network structure on the spreading of systemic risk on the structure. Random graphs, i.e., the Erdös-Rényi model, are considered "benchmark" network structures while core-periphery structures are often indicated in the literature as idealized structures, although they are able to capture interesting, specific features of real-world financial networks. Moreover, as a matter of comparison, we also perform numerical experiments on small-world networks. Fil: Dolfin, Marina. University Of Messina. Department of Engineering; Italia Fil: Knopoff, Damián Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: Limosani, Michele. University Of Messina. Department Of Economics; Italia Fil: Xibilia, Maria Gabriella. University Of Messina. Department Of Engineering; Italia |
description |
This paper proposes a model of the dynamics of credit contagion through non-performing loans on financial networks. Credit risk contagion is modeled in the context of the classical SIS (Susceptibles-Infected-Susceptibles) epidemic processes on networks but with a fundamental novelty. In fact, we assume the presence of two different classes of infected agents, and then we differentiate the dynamics of assets subject to idiosyncratic risk from those affected by systemic risk by adopting a SIIS (Susceptible-Infected1-Infected2-Susceptible) model. In the recent literature in this field, the effect of systemic credit risk on the performance of the financial network is a hot topic. We perform numerical simulations intended to explore the roles played by two different network structures on the long-term behavior of assets affected by systemic risk in order to analyze the effect of the topology of the underlying network structure on the spreading of systemic risk on the structure. Random graphs, i.e., the Erdös-Rényi model, are considered "benchmark" network structures while core-periphery structures are often indicated in the literature as idealized structures, although they are able to capture interesting, specific features of real-world financial networks. Moreover, as a matter of comparison, we also perform numerical experiments on small-world networks. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-08-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/124666 Dolfin, Marina; Knopoff, Damián Alejandro; Limosani, Michele; Xibilia, Maria Gabriella; Credit risk contagion and systemic risk on networks; MDPI AG; Mathematics; 7; 8; 7-8-2019; 713 2227-7390 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/124666 |
identifier_str_mv |
Dolfin, Marina; Knopoff, Damián Alejandro; Limosani, Michele; Xibilia, Maria Gabriella; Credit risk contagion and systemic risk on networks; MDPI AG; Mathematics; 7; 8; 7-8-2019; 713 2227-7390 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3390/math7080713 info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2227-7390/7/8/713 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI AG |
publisher.none.fl_str_mv |
MDPI AG |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083501683638272 |
score |
13.22299 |