Optimization of critical parameters during antioxidants extraction from butterhead lettuce to simultaneously enhance polyphenols and antioxidant activity
- Autores
- Viacava, Gabriela Elena; Roura, Sara Ines; Agüero, Maria Victoria
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The present work was undertaken to optimize critical parameters (ethanol concentration, time and temperature) for antioxidant extraction from lettuce leaves, measured through DPPH radical scavenging activity (DRSA) and total phenolics content (TPC), using Response Surface Methodology (RSM). Individual optimization of each response was carried out and compared with a simultaneous optimization that allowed maximizing the two responses at the same time. For simultaneous optimization, Desirability function with the Larger-the-Best criteria was employed. Determination coefficients (R2) for the second-order models adjusted by RSM were above 91% and the models showed non-significant Lack of Fit. Single optimization of DRSA found conditions for extraction (70% ethanol, 32 °C and 2.5 h) that allowed obtaining 69.62 mg ascorbic acid equivalent (AAE)/100 g FW, while 43.20 mg gallic acid equivalents (GAE)/100 g FW was predicted for TPC. Meanwhile,when optimizing only TPC as a single optimization, extraction conditions changed (70% ethanol, 42 °C and 2 h) obtaining values of 46.92 mg GAE/100 g FW for TPC and 65.43 mg AAE/100 g FW for DRSA. Optimal conditions found when the Desirability function was applied to simultaneously enhance DRSA and TPC were: 70% ethanol, 32 °C and 2 h. Under these conditions, good values for both responses were predicted: 69.62 mg AAE/100 g FW and 44.37 mg GAE/100 g FW for DRSA and TPC, respectively. These results were validated and a close agreement between experimental and predicted values indicated the suitability of the model employed and the success of RSM in modeling responses to characterize their dependence with extraction conditions under evaluation. Additionally, it was demonstrated the advantage of applying the Desirability function when more than one response must be optimized finding a compromise solution without harming any response as could happen when considering the optimal conditions for only one of them.
Fil: Viacava, Gabriela Elena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Ingeniería Química. Grupo de Investigación en Ingeniería En Alimentos; Argentina
Fil: Roura, Sara Ines. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Ingeniería Química. Grupo de Investigación en Ingeniería En Alimentos; Argentina
Fil: Agüero, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología. Cátedra de Microbiología Industrial y Biotecnología; Argentina - Materia
-
Radical Scavenging Activity
Total Phenolic Content
Solvent Extraction
Bioactive Compounds
Dpph - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/42617
Ver los metadatos del registro completo
id |
CONICETDig_7caeb42fdb1910d7e7534e1a0e30442c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/42617 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Optimization of critical parameters during antioxidants extraction from butterhead lettuce to simultaneously enhance polyphenols and antioxidant activityViacava, Gabriela ElenaRoura, Sara InesAgüero, Maria VictoriaRadical Scavenging ActivityTotal Phenolic ContentSolvent ExtractionBioactive CompoundsDpphhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2The present work was undertaken to optimize critical parameters (ethanol concentration, time and temperature) for antioxidant extraction from lettuce leaves, measured through DPPH radical scavenging activity (DRSA) and total phenolics content (TPC), using Response Surface Methodology (RSM). Individual optimization of each response was carried out and compared with a simultaneous optimization that allowed maximizing the two responses at the same time. For simultaneous optimization, Desirability function with the Larger-the-Best criteria was employed. Determination coefficients (R2) for the second-order models adjusted by RSM were above 91% and the models showed non-significant Lack of Fit. Single optimization of DRSA found conditions for extraction (70% ethanol, 32 °C and 2.5 h) that allowed obtaining 69.62 mg ascorbic acid equivalent (AAE)/100 g FW, while 43.20 mg gallic acid equivalents (GAE)/100 g FW was predicted for TPC. Meanwhile,when optimizing only TPC as a single optimization, extraction conditions changed (70% ethanol, 42 °C and 2 h) obtaining values of 46.92 mg GAE/100 g FW for TPC and 65.43 mg AAE/100 g FW for DRSA. Optimal conditions found when the Desirability function was applied to simultaneously enhance DRSA and TPC were: 70% ethanol, 32 °C and 2 h. Under these conditions, good values for both responses were predicted: 69.62 mg AAE/100 g FW and 44.37 mg GAE/100 g FW for DRSA and TPC, respectively. These results were validated and a close agreement between experimental and predicted values indicated the suitability of the model employed and the success of RSM in modeling responses to characterize their dependence with extraction conditions under evaluation. Additionally, it was demonstrated the advantage of applying the Desirability function when more than one response must be optimized finding a compromise solution without harming any response as could happen when considering the optimal conditions for only one of them.Fil: Viacava, Gabriela Elena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Ingeniería Química. Grupo de Investigación en Ingeniería En Alimentos; ArgentinaFil: Roura, Sara Ines. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Ingeniería Química. Grupo de Investigación en Ingeniería En Alimentos; ArgentinaFil: Agüero, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología. Cátedra de Microbiología Industrial y Biotecnología; ArgentinaElsevier Science2015-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/42617Viacava, Gabriela Elena; Roura, Sara Ines; Agüero, Maria Victoria; Optimization of critical parameters during antioxidants extraction from butterhead lettuce to simultaneously enhance polyphenols and antioxidant activity; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 146; 5-2015; 47-540169-7439CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.chemolab.2015.05.002info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S016974391500115Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:54Zoai:ri.conicet.gov.ar:11336/42617instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:55.002CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Optimization of critical parameters during antioxidants extraction from butterhead lettuce to simultaneously enhance polyphenols and antioxidant activity |
title |
Optimization of critical parameters during antioxidants extraction from butterhead lettuce to simultaneously enhance polyphenols and antioxidant activity |
spellingShingle |
Optimization of critical parameters during antioxidants extraction from butterhead lettuce to simultaneously enhance polyphenols and antioxidant activity Viacava, Gabriela Elena Radical Scavenging Activity Total Phenolic Content Solvent Extraction Bioactive Compounds Dpph |
title_short |
Optimization of critical parameters during antioxidants extraction from butterhead lettuce to simultaneously enhance polyphenols and antioxidant activity |
title_full |
Optimization of critical parameters during antioxidants extraction from butterhead lettuce to simultaneously enhance polyphenols and antioxidant activity |
title_fullStr |
Optimization of critical parameters during antioxidants extraction from butterhead lettuce to simultaneously enhance polyphenols and antioxidant activity |
title_full_unstemmed |
Optimization of critical parameters during antioxidants extraction from butterhead lettuce to simultaneously enhance polyphenols and antioxidant activity |
title_sort |
Optimization of critical parameters during antioxidants extraction from butterhead lettuce to simultaneously enhance polyphenols and antioxidant activity |
dc.creator.none.fl_str_mv |
Viacava, Gabriela Elena Roura, Sara Ines Agüero, Maria Victoria |
author |
Viacava, Gabriela Elena |
author_facet |
Viacava, Gabriela Elena Roura, Sara Ines Agüero, Maria Victoria |
author_role |
author |
author2 |
Roura, Sara Ines Agüero, Maria Victoria |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Radical Scavenging Activity Total Phenolic Content Solvent Extraction Bioactive Compounds Dpph |
topic |
Radical Scavenging Activity Total Phenolic Content Solvent Extraction Bioactive Compounds Dpph |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The present work was undertaken to optimize critical parameters (ethanol concentration, time and temperature) for antioxidant extraction from lettuce leaves, measured through DPPH radical scavenging activity (DRSA) and total phenolics content (TPC), using Response Surface Methodology (RSM). Individual optimization of each response was carried out and compared with a simultaneous optimization that allowed maximizing the two responses at the same time. For simultaneous optimization, Desirability function with the Larger-the-Best criteria was employed. Determination coefficients (R2) for the second-order models adjusted by RSM were above 91% and the models showed non-significant Lack of Fit. Single optimization of DRSA found conditions for extraction (70% ethanol, 32 °C and 2.5 h) that allowed obtaining 69.62 mg ascorbic acid equivalent (AAE)/100 g FW, while 43.20 mg gallic acid equivalents (GAE)/100 g FW was predicted for TPC. Meanwhile,when optimizing only TPC as a single optimization, extraction conditions changed (70% ethanol, 42 °C and 2 h) obtaining values of 46.92 mg GAE/100 g FW for TPC and 65.43 mg AAE/100 g FW for DRSA. Optimal conditions found when the Desirability function was applied to simultaneously enhance DRSA and TPC were: 70% ethanol, 32 °C and 2 h. Under these conditions, good values for both responses were predicted: 69.62 mg AAE/100 g FW and 44.37 mg GAE/100 g FW for DRSA and TPC, respectively. These results were validated and a close agreement between experimental and predicted values indicated the suitability of the model employed and the success of RSM in modeling responses to characterize their dependence with extraction conditions under evaluation. Additionally, it was demonstrated the advantage of applying the Desirability function when more than one response must be optimized finding a compromise solution without harming any response as could happen when considering the optimal conditions for only one of them. Fil: Viacava, Gabriela Elena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Ingeniería Química. Grupo de Investigación en Ingeniería En Alimentos; Argentina Fil: Roura, Sara Ines. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Ingeniería Química. Grupo de Investigación en Ingeniería En Alimentos; Argentina Fil: Agüero, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología. Cátedra de Microbiología Industrial y Biotecnología; Argentina |
description |
The present work was undertaken to optimize critical parameters (ethanol concentration, time and temperature) for antioxidant extraction from lettuce leaves, measured through DPPH radical scavenging activity (DRSA) and total phenolics content (TPC), using Response Surface Methodology (RSM). Individual optimization of each response was carried out and compared with a simultaneous optimization that allowed maximizing the two responses at the same time. For simultaneous optimization, Desirability function with the Larger-the-Best criteria was employed. Determination coefficients (R2) for the second-order models adjusted by RSM were above 91% and the models showed non-significant Lack of Fit. Single optimization of DRSA found conditions for extraction (70% ethanol, 32 °C and 2.5 h) that allowed obtaining 69.62 mg ascorbic acid equivalent (AAE)/100 g FW, while 43.20 mg gallic acid equivalents (GAE)/100 g FW was predicted for TPC. Meanwhile,when optimizing only TPC as a single optimization, extraction conditions changed (70% ethanol, 42 °C and 2 h) obtaining values of 46.92 mg GAE/100 g FW for TPC and 65.43 mg AAE/100 g FW for DRSA. Optimal conditions found when the Desirability function was applied to simultaneously enhance DRSA and TPC were: 70% ethanol, 32 °C and 2 h. Under these conditions, good values for both responses were predicted: 69.62 mg AAE/100 g FW and 44.37 mg GAE/100 g FW for DRSA and TPC, respectively. These results were validated and a close agreement between experimental and predicted values indicated the suitability of the model employed and the success of RSM in modeling responses to characterize their dependence with extraction conditions under evaluation. Additionally, it was demonstrated the advantage of applying the Desirability function when more than one response must be optimized finding a compromise solution without harming any response as could happen when considering the optimal conditions for only one of them. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/42617 Viacava, Gabriela Elena; Roura, Sara Ines; Agüero, Maria Victoria; Optimization of critical parameters during antioxidants extraction from butterhead lettuce to simultaneously enhance polyphenols and antioxidant activity; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 146; 5-2015; 47-54 0169-7439 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/42617 |
identifier_str_mv |
Viacava, Gabriela Elena; Roura, Sara Ines; Agüero, Maria Victoria; Optimization of critical parameters during antioxidants extraction from butterhead lettuce to simultaneously enhance polyphenols and antioxidant activity; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 146; 5-2015; 47-54 0169-7439 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.chemolab.2015.05.002 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S016974391500115X |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613045946417152 |
score |
13.070432 |