Probabilistic matching pursuit with Gabor dictionaries
- Autores
- Ferrando, Sebastian Esteban; Doolittle, E.J.; Bernal, A. J.; Bernal, Luis
- Año de publicación
- 2000
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We propose a probabilistic extension of the matching pursuit adaptive signal processing algorithm introduced by Mallat and others. In adaptive signal processing, signals are expanded in terms of a large linearly dependent `dictionary' of functions rather than in terms of an orthonormal basis. Matching pursuit is a simple greedy algorithm for generating an expansion of a given signal. In probabilistic matching pursuit multiple random expansions are obtained as estimates for a given signal. The new algorithm is illustrated in the context of signal denoising. Although most of the random expansions generated by probabilistic matching pursuit are poorer estimates for the signal than those obtained by matching pursuit, our final estimate, obtained as an expected value computed by means of an ergodic average, can improve the result obtained by MP in some denoising situations. One of the major underlying ideas is a novel notion of coherence between a signal and the dictionary. Several simulated examples are presented.
Fil: Ferrando, Sebastian Esteban. Ryerson Polytechnic University; Canadá
Fil: Doolittle, E.J.. University of Toronto; Canadá
Fil: Bernal, A. J.. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Bernal, Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina - Materia
-
Matching Pursuit
Gabor Function Dictionary
Denoising
Rejection Sampling
Bernoulli Shift - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/39206
Ver los metadatos del registro completo
id |
CONICETDig_7bbdddadf2eca7bf5d2b2bf3e6c63eea |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/39206 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Probabilistic matching pursuit with Gabor dictionariesFerrando, Sebastian EstebanDoolittle, E.J.Bernal, A. J.Bernal, LuisMatching PursuitGabor Function DictionaryDenoisingRejection SamplingBernoulli Shifthttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3We propose a probabilistic extension of the matching pursuit adaptive signal processing algorithm introduced by Mallat and others. In adaptive signal processing, signals are expanded in terms of a large linearly dependent `dictionary' of functions rather than in terms of an orthonormal basis. Matching pursuit is a simple greedy algorithm for generating an expansion of a given signal. In probabilistic matching pursuit multiple random expansions are obtained as estimates for a given signal. The new algorithm is illustrated in the context of signal denoising. Although most of the random expansions generated by probabilistic matching pursuit are poorer estimates for the signal than those obtained by matching pursuit, our final estimate, obtained as an expected value computed by means of an ergodic average, can improve the result obtained by MP in some denoising situations. One of the major underlying ideas is a novel notion of coherence between a signal and the dictionary. Several simulated examples are presented.Fil: Ferrando, Sebastian Esteban. Ryerson Polytechnic University; CanadáFil: Doolittle, E.J.. University of Toronto; CanadáFil: Bernal, A. J.. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Bernal, Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaElsevier Science2000-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/39206Ferrando, Sebastian Esteban; Doolittle, E.J.; Bernal, A. J.; Bernal, Luis; Probabilistic matching pursuit with Gabor dictionaries; Elsevier Science; Signal Processing; 80; 10; 12-2000; 2099-21200165-1684CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/S0165-1684(00)00071-2info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0165168400000712info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:51Zoai:ri.conicet.gov.ar:11336/39206instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:52.109CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Probabilistic matching pursuit with Gabor dictionaries |
title |
Probabilistic matching pursuit with Gabor dictionaries |
spellingShingle |
Probabilistic matching pursuit with Gabor dictionaries Ferrando, Sebastian Esteban Matching Pursuit Gabor Function Dictionary Denoising Rejection Sampling Bernoulli Shift |
title_short |
Probabilistic matching pursuit with Gabor dictionaries |
title_full |
Probabilistic matching pursuit with Gabor dictionaries |
title_fullStr |
Probabilistic matching pursuit with Gabor dictionaries |
title_full_unstemmed |
Probabilistic matching pursuit with Gabor dictionaries |
title_sort |
Probabilistic matching pursuit with Gabor dictionaries |
dc.creator.none.fl_str_mv |
Ferrando, Sebastian Esteban Doolittle, E.J. Bernal, A. J. Bernal, Luis |
author |
Ferrando, Sebastian Esteban |
author_facet |
Ferrando, Sebastian Esteban Doolittle, E.J. Bernal, A. J. Bernal, Luis |
author_role |
author |
author2 |
Doolittle, E.J. Bernal, A. J. Bernal, Luis |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Matching Pursuit Gabor Function Dictionary Denoising Rejection Sampling Bernoulli Shift |
topic |
Matching Pursuit Gabor Function Dictionary Denoising Rejection Sampling Bernoulli Shift |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.1 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
We propose a probabilistic extension of the matching pursuit adaptive signal processing algorithm introduced by Mallat and others. In adaptive signal processing, signals are expanded in terms of a large linearly dependent `dictionary' of functions rather than in terms of an orthonormal basis. Matching pursuit is a simple greedy algorithm for generating an expansion of a given signal. In probabilistic matching pursuit multiple random expansions are obtained as estimates for a given signal. The new algorithm is illustrated in the context of signal denoising. Although most of the random expansions generated by probabilistic matching pursuit are poorer estimates for the signal than those obtained by matching pursuit, our final estimate, obtained as an expected value computed by means of an ergodic average, can improve the result obtained by MP in some denoising situations. One of the major underlying ideas is a novel notion of coherence between a signal and the dictionary. Several simulated examples are presented. Fil: Ferrando, Sebastian Esteban. Ryerson Polytechnic University; Canadá Fil: Doolittle, E.J.. University of Toronto; Canadá Fil: Bernal, A. J.. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina Fil: Bernal, Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina |
description |
We propose a probabilistic extension of the matching pursuit adaptive signal processing algorithm introduced by Mallat and others. In adaptive signal processing, signals are expanded in terms of a large linearly dependent `dictionary' of functions rather than in terms of an orthonormal basis. Matching pursuit is a simple greedy algorithm for generating an expansion of a given signal. In probabilistic matching pursuit multiple random expansions are obtained as estimates for a given signal. The new algorithm is illustrated in the context of signal denoising. Although most of the random expansions generated by probabilistic matching pursuit are poorer estimates for the signal than those obtained by matching pursuit, our final estimate, obtained as an expected value computed by means of an ergodic average, can improve the result obtained by MP in some denoising situations. One of the major underlying ideas is a novel notion of coherence between a signal and the dictionary. Several simulated examples are presented. |
publishDate |
2000 |
dc.date.none.fl_str_mv |
2000-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/39206 Ferrando, Sebastian Esteban; Doolittle, E.J.; Bernal, A. J.; Bernal, Luis; Probabilistic matching pursuit with Gabor dictionaries; Elsevier Science; Signal Processing; 80; 10; 12-2000; 2099-2120 0165-1684 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/39206 |
identifier_str_mv |
Ferrando, Sebastian Esteban; Doolittle, E.J.; Bernal, A. J.; Bernal, Luis; Probabilistic matching pursuit with Gabor dictionaries; Elsevier Science; Signal Processing; 80; 10; 12-2000; 2099-2120 0165-1684 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/S0165-1684(00)00071-2 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0165168400000712 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269489246240768 |
score |
13.13397 |