Pressure induced stability enhancement of cubic nanostructured CeO2

Autores
Paulin, Mariano Andrés; Garbarino, Gaston; Leyva, Ana Gabriela; Mezouar, Mohamed; Sacanell, Joaquin Gonzalo
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Ceria (CeO2)-based materials are widely used in applications such as catalysis, fuel cells and oxygen sensors. Its cubic fluorite structure with a cell parameter similar to that of silicon makes it a candidate for implementation in electronic devices. This structure is stable in a wide temperature and pressure range, with a reported structural phase transition to an orthorhombic phase. In this work, we study the structure of CeO2 under hydrostatic pressures up to 110 GPa simultaneously for the nanometer-and micrometer-sized powders as well as for a single crystal, using He as the pressure-transmitting medium. The first-order transition is clearly present for the micrometer-sized and single-crystal samples, while, for the nanometer grain size powder, it is suppressed up to at least 110 GPa. We show that the stacking fault density increases by two orders of magnitude in the studied pressure range and could act as an internal constraint, avoiding the nucleation of the high-pressure phase.
Fil: Paulin, Mariano Andrés. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina
Fil: Garbarino, Gaston. European Synchrotron Radiation; Francia
Fil: Leyva, Ana Gabriela. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina
Fil: Mezouar, Mohamed. European Synchrotron Radiation; Francia
Fil: Sacanell, Joaquin Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes; Argentina
Materia
CERIA
HIGH PRESSURE
NANOPARTICLES
STACKING FAULTS
X-RAY DIFFRACTION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/146202

id CONICETDig_7af9f5e118dce15865713e087000e272
oai_identifier_str oai:ri.conicet.gov.ar:11336/146202
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Pressure induced stability enhancement of cubic nanostructured CeO2Paulin, Mariano AndrésGarbarino, GastonLeyva, Ana GabrielaMezouar, MohamedSacanell, Joaquin GonzaloCERIAHIGH PRESSURENANOPARTICLESSTACKING FAULTSX-RAY DIFFRACTIONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Ceria (CeO2)-based materials are widely used in applications such as catalysis, fuel cells and oxygen sensors. Its cubic fluorite structure with a cell parameter similar to that of silicon makes it a candidate for implementation in electronic devices. This structure is stable in a wide temperature and pressure range, with a reported structural phase transition to an orthorhombic phase. In this work, we study the structure of CeO2 under hydrostatic pressures up to 110 GPa simultaneously for the nanometer-and micrometer-sized powders as well as for a single crystal, using He as the pressure-transmitting medium. The first-order transition is clearly present for the micrometer-sized and single-crystal samples, while, for the nanometer grain size powder, it is suppressed up to at least 110 GPa. We show that the stacking fault density increases by two orders of magnitude in the studied pressure range and could act as an internal constraint, avoiding the nucleation of the high-pressure phase.Fil: Paulin, Mariano Andrés. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; ArgentinaFil: Garbarino, Gaston. European Synchrotron Radiation; FranciaFil: Leyva, Ana Gabriela. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; ArgentinaFil: Mezouar, Mohamed. European Synchrotron Radiation; FranciaFil: Sacanell, Joaquin Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes; ArgentinaMolecular Diversity Preservation International2020-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/146202Paulin, Mariano Andrés; Garbarino, Gaston; Leyva, Ana Gabriela; Mezouar, Mohamed; Sacanell, Joaquin Gonzalo; Pressure induced stability enhancement of cubic nanostructured CeO2; Molecular Diversity Preservation International; Nanomaterials; 10; 4; 3-2020; 1-92079-4991CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2079-4991/10/4/650info:eu-repo/semantics/altIdentifier/doi/10.3390/nano10040650info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:52:36Zoai:ri.conicet.gov.ar:11336/146202instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:52:36.761CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Pressure induced stability enhancement of cubic nanostructured CeO2
title Pressure induced stability enhancement of cubic nanostructured CeO2
spellingShingle Pressure induced stability enhancement of cubic nanostructured CeO2
Paulin, Mariano Andrés
CERIA
HIGH PRESSURE
NANOPARTICLES
STACKING FAULTS
X-RAY DIFFRACTION
title_short Pressure induced stability enhancement of cubic nanostructured CeO2
title_full Pressure induced stability enhancement of cubic nanostructured CeO2
title_fullStr Pressure induced stability enhancement of cubic nanostructured CeO2
title_full_unstemmed Pressure induced stability enhancement of cubic nanostructured CeO2
title_sort Pressure induced stability enhancement of cubic nanostructured CeO2
dc.creator.none.fl_str_mv Paulin, Mariano Andrés
Garbarino, Gaston
Leyva, Ana Gabriela
Mezouar, Mohamed
Sacanell, Joaquin Gonzalo
author Paulin, Mariano Andrés
author_facet Paulin, Mariano Andrés
Garbarino, Gaston
Leyva, Ana Gabriela
Mezouar, Mohamed
Sacanell, Joaquin Gonzalo
author_role author
author2 Garbarino, Gaston
Leyva, Ana Gabriela
Mezouar, Mohamed
Sacanell, Joaquin Gonzalo
author2_role author
author
author
author
dc.subject.none.fl_str_mv CERIA
HIGH PRESSURE
NANOPARTICLES
STACKING FAULTS
X-RAY DIFFRACTION
topic CERIA
HIGH PRESSURE
NANOPARTICLES
STACKING FAULTS
X-RAY DIFFRACTION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Ceria (CeO2)-based materials are widely used in applications such as catalysis, fuel cells and oxygen sensors. Its cubic fluorite structure with a cell parameter similar to that of silicon makes it a candidate for implementation in electronic devices. This structure is stable in a wide temperature and pressure range, with a reported structural phase transition to an orthorhombic phase. In this work, we study the structure of CeO2 under hydrostatic pressures up to 110 GPa simultaneously for the nanometer-and micrometer-sized powders as well as for a single crystal, using He as the pressure-transmitting medium. The first-order transition is clearly present for the micrometer-sized and single-crystal samples, while, for the nanometer grain size powder, it is suppressed up to at least 110 GPa. We show that the stacking fault density increases by two orders of magnitude in the studied pressure range and could act as an internal constraint, avoiding the nucleation of the high-pressure phase.
Fil: Paulin, Mariano Andrés. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina
Fil: Garbarino, Gaston. European Synchrotron Radiation; Francia
Fil: Leyva, Ana Gabriela. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina
Fil: Mezouar, Mohamed. European Synchrotron Radiation; Francia
Fil: Sacanell, Joaquin Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes; Argentina
description Ceria (CeO2)-based materials are widely used in applications such as catalysis, fuel cells and oxygen sensors. Its cubic fluorite structure with a cell parameter similar to that of silicon makes it a candidate for implementation in electronic devices. This structure is stable in a wide temperature and pressure range, with a reported structural phase transition to an orthorhombic phase. In this work, we study the structure of CeO2 under hydrostatic pressures up to 110 GPa simultaneously for the nanometer-and micrometer-sized powders as well as for a single crystal, using He as the pressure-transmitting medium. The first-order transition is clearly present for the micrometer-sized and single-crystal samples, while, for the nanometer grain size powder, it is suppressed up to at least 110 GPa. We show that the stacking fault density increases by two orders of magnitude in the studied pressure range and could act as an internal constraint, avoiding the nucleation of the high-pressure phase.
publishDate 2020
dc.date.none.fl_str_mv 2020-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/146202
Paulin, Mariano Andrés; Garbarino, Gaston; Leyva, Ana Gabriela; Mezouar, Mohamed; Sacanell, Joaquin Gonzalo; Pressure induced stability enhancement of cubic nanostructured CeO2; Molecular Diversity Preservation International; Nanomaterials; 10; 4; 3-2020; 1-9
2079-4991
CONICET Digital
CONICET
url http://hdl.handle.net/11336/146202
identifier_str_mv Paulin, Mariano Andrés; Garbarino, Gaston; Leyva, Ana Gabriela; Mezouar, Mohamed; Sacanell, Joaquin Gonzalo; Pressure induced stability enhancement of cubic nanostructured CeO2; Molecular Diversity Preservation International; Nanomaterials; 10; 4; 3-2020; 1-9
2079-4991
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2079-4991/10/4/650
info:eu-repo/semantics/altIdentifier/doi/10.3390/nano10040650
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Molecular Diversity Preservation International
publisher.none.fl_str_mv Molecular Diversity Preservation International
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613613562626048
score 13.070432