Pressure-Induced Structural Phase Transition of Co-Doped SnO2 Nanocrystals

Autores
Panchal, Vinod; Pampillo, Laura Gabriela; Ferrari, Sergio; Bilovol, Vitaliy; Popescu, Catalin; Errandonea, Daniel
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Co-doped SnO2 nanocrystals (with a particle size of 10 nm) with a tetragonal rutile-type (space group P42/mnm) structure have been investigated for their use in in situ high-pressure synchrotron angle dispersive powder X-ray diffraction up to 20.9 GPa and at an ambient temperature. An analysis of experimental results based on Rietveld refinements suggests that rutile-type Co-doped SnO2 undergoes a structural phase transition at 14.2 GPa to an orthorhombic CaCl2-type phase (space group Pnnm), with no phase coexistence during the phase transition. No further phase transition is observed until 20.9 GPa, which is the highest pressure covered by the experiments. The low-pressure and high-pressure phases are related via a group/subgroup relationship. However, a discontinuous change in the unit-cell volume is detected at the phase transition; thus, the phase transition can be classified as a first-order type. Upon decompression, the transition has been found to be reversible. The results are compared with previous high-pressure studies on doped and un-doped SnO2. The compressibility of different phases will be discussed.
Fil: Panchal, Vinod. No especifíca;
Fil: Pampillo, Laura Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina
Fil: Ferrari, Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina
Fil: Bilovol, Vitaliy. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina
Fil: Popescu, Catalin. No especifíca;
Fil: Errandonea, Daniel. Universidad de Valencia; España
Materia
HIGH PRESSURE
PHASE TRANSITION
SYNCHROTRON RADIATION
X-RAY DIFFRACTION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/227878

id CONICETDig_144300f93f1f0c3fc09133f539fb635a
oai_identifier_str oai:ri.conicet.gov.ar:11336/227878
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Pressure-Induced Structural Phase Transition of Co-Doped SnO2 NanocrystalsPanchal, VinodPampillo, Laura GabrielaFerrari, SergioBilovol, VitaliyPopescu, CatalinErrandonea, DanielHIGH PRESSUREPHASE TRANSITIONSYNCHROTRON RADIATIONX-RAY DIFFRACTIONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Co-doped SnO2 nanocrystals (with a particle size of 10 nm) with a tetragonal rutile-type (space group P42/mnm) structure have been investigated for their use in in situ high-pressure synchrotron angle dispersive powder X-ray diffraction up to 20.9 GPa and at an ambient temperature. An analysis of experimental results based on Rietveld refinements suggests that rutile-type Co-doped SnO2 undergoes a structural phase transition at 14.2 GPa to an orthorhombic CaCl2-type phase (space group Pnnm), with no phase coexistence during the phase transition. No further phase transition is observed until 20.9 GPa, which is the highest pressure covered by the experiments. The low-pressure and high-pressure phases are related via a group/subgroup relationship. However, a discontinuous change in the unit-cell volume is detected at the phase transition; thus, the phase transition can be classified as a first-order type. Upon decompression, the transition has been found to be reversible. The results are compared with previous high-pressure studies on doped and un-doped SnO2. The compressibility of different phases will be discussed.Fil: Panchal, Vinod. No especifíca;Fil: Pampillo, Laura Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; ArgentinaFil: Ferrari, Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; ArgentinaFil: Bilovol, Vitaliy. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; ArgentinaFil: Popescu, Catalin. No especifíca;Fil: Errandonea, Daniel. Universidad de Valencia; EspañaMDPI2023-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/227878Panchal, Vinod; Pampillo, Laura Gabriela; Ferrari, Sergio; Bilovol, Vitaliy; Popescu, Catalin; et al.; Pressure-Induced Structural Phase Transition of Co-Doped SnO2 Nanocrystals; MDPI; Crystals; 13; 6; 5-2023; 1-112073-4352CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-4352/13/6/900info:eu-repo/semantics/altIdentifier/doi/10.3390/cryst13060900info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:15:11Zoai:ri.conicet.gov.ar:11336/227878instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:15:11.633CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Pressure-Induced Structural Phase Transition of Co-Doped SnO2 Nanocrystals
title Pressure-Induced Structural Phase Transition of Co-Doped SnO2 Nanocrystals
spellingShingle Pressure-Induced Structural Phase Transition of Co-Doped SnO2 Nanocrystals
Panchal, Vinod
HIGH PRESSURE
PHASE TRANSITION
SYNCHROTRON RADIATION
X-RAY DIFFRACTION
title_short Pressure-Induced Structural Phase Transition of Co-Doped SnO2 Nanocrystals
title_full Pressure-Induced Structural Phase Transition of Co-Doped SnO2 Nanocrystals
title_fullStr Pressure-Induced Structural Phase Transition of Co-Doped SnO2 Nanocrystals
title_full_unstemmed Pressure-Induced Structural Phase Transition of Co-Doped SnO2 Nanocrystals
title_sort Pressure-Induced Structural Phase Transition of Co-Doped SnO2 Nanocrystals
dc.creator.none.fl_str_mv Panchal, Vinod
Pampillo, Laura Gabriela
Ferrari, Sergio
Bilovol, Vitaliy
Popescu, Catalin
Errandonea, Daniel
author Panchal, Vinod
author_facet Panchal, Vinod
Pampillo, Laura Gabriela
Ferrari, Sergio
Bilovol, Vitaliy
Popescu, Catalin
Errandonea, Daniel
author_role author
author2 Pampillo, Laura Gabriela
Ferrari, Sergio
Bilovol, Vitaliy
Popescu, Catalin
Errandonea, Daniel
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv HIGH PRESSURE
PHASE TRANSITION
SYNCHROTRON RADIATION
X-RAY DIFFRACTION
topic HIGH PRESSURE
PHASE TRANSITION
SYNCHROTRON RADIATION
X-RAY DIFFRACTION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Co-doped SnO2 nanocrystals (with a particle size of 10 nm) with a tetragonal rutile-type (space group P42/mnm) structure have been investigated for their use in in situ high-pressure synchrotron angle dispersive powder X-ray diffraction up to 20.9 GPa and at an ambient temperature. An analysis of experimental results based on Rietveld refinements suggests that rutile-type Co-doped SnO2 undergoes a structural phase transition at 14.2 GPa to an orthorhombic CaCl2-type phase (space group Pnnm), with no phase coexistence during the phase transition. No further phase transition is observed until 20.9 GPa, which is the highest pressure covered by the experiments. The low-pressure and high-pressure phases are related via a group/subgroup relationship. However, a discontinuous change in the unit-cell volume is detected at the phase transition; thus, the phase transition can be classified as a first-order type. Upon decompression, the transition has been found to be reversible. The results are compared with previous high-pressure studies on doped and un-doped SnO2. The compressibility of different phases will be discussed.
Fil: Panchal, Vinod. No especifíca;
Fil: Pampillo, Laura Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina
Fil: Ferrari, Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina
Fil: Bilovol, Vitaliy. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina
Fil: Popescu, Catalin. No especifíca;
Fil: Errandonea, Daniel. Universidad de Valencia; España
description Co-doped SnO2 nanocrystals (with a particle size of 10 nm) with a tetragonal rutile-type (space group P42/mnm) structure have been investigated for their use in in situ high-pressure synchrotron angle dispersive powder X-ray diffraction up to 20.9 GPa and at an ambient temperature. An analysis of experimental results based on Rietveld refinements suggests that rutile-type Co-doped SnO2 undergoes a structural phase transition at 14.2 GPa to an orthorhombic CaCl2-type phase (space group Pnnm), with no phase coexistence during the phase transition. No further phase transition is observed until 20.9 GPa, which is the highest pressure covered by the experiments. The low-pressure and high-pressure phases are related via a group/subgroup relationship. However, a discontinuous change in the unit-cell volume is detected at the phase transition; thus, the phase transition can be classified as a first-order type. Upon decompression, the transition has been found to be reversible. The results are compared with previous high-pressure studies on doped and un-doped SnO2. The compressibility of different phases will be discussed.
publishDate 2023
dc.date.none.fl_str_mv 2023-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/227878
Panchal, Vinod; Pampillo, Laura Gabriela; Ferrari, Sergio; Bilovol, Vitaliy; Popescu, Catalin; et al.; Pressure-Induced Structural Phase Transition of Co-Doped SnO2 Nanocrystals; MDPI; Crystals; 13; 6; 5-2023; 1-11
2073-4352
CONICET Digital
CONICET
url http://hdl.handle.net/11336/227878
identifier_str_mv Panchal, Vinod; Pampillo, Laura Gabriela; Ferrari, Sergio; Bilovol, Vitaliy; Popescu, Catalin; et al.; Pressure-Induced Structural Phase Transition of Co-Doped SnO2 Nanocrystals; MDPI; Crystals; 13; 6; 5-2023; 1-11
2073-4352
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-4352/13/6/900
info:eu-repo/semantics/altIdentifier/doi/10.3390/cryst13060900
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083299693297664
score 13.22299