Empirical models to determine ions concentrations in lithium brines with high ionic strength

Autores
Valdez, Silvana Karina; Orce Schwarz, Agustina María; Thames Cantolla, Martin Ignacio
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Argentina Puna brines are complex systems in which ions such as Na+, K+, Li+, Mg2+, Ca2+, SO4 2− , and B4O7 2− are presents. To obtain lithium carbonate from brines, they must be treated in order to increase its lithium concentrations and to eliminate the others ions that are presents in the brines. During concentration some salts can reach their solubility products (kps) and crystallize, producing different solid-liquid equilibriums. In order to design and select the process to purify the brine before lithium salts precipitation, it is necessary to know the other ions concentrations. Ion concentrations in solutions can be calculated based on the salts coefficient activities using Pitzer’s model and its modifications. These methods have the restriction that can only be applied to solutions with ionic strength values up to 6 molal. The state of the art shows that the approach to study the equilibrium in complex system is to consider it as binary, ternary, quaternary and quinary systems. When ionic strength values are higher than 6 m the systems studied are binaries or have symmetrical ions. Brines of the Argentina Puna have, in general, initial ionic strength values around 6 molal and it increases when the brine is concentrated by evaporation, so the available thermodynamical models cannot be used to determine, beforehand, the final composition of a certain brine. In this work four different brines from four different Puna plateau in Argentina were evaporated to several degrees and ionic strength was calculated from the chemical brine’s composition after each evaporation test. Ionic strength was found to correlate with the percentage of eliminated water following two different simple mathematical models, depending on the initial sulphate concentration of the brine and the possibility of its precipitation. Models to estimate the concentration of diluted ions of commercial value such as Li+, K+, and Mg2+ as function of ionic strength were also proposed. Ion concentrations could be modeled as function of the amount of eliminated water, once the correct relationship between this parameter and the ionic strength of the brine is established. These models correlate accurately ionic strength and ion concentrations for an ionic strength range from 4.8 to 15.4 molal; corresponding to percentages of water evaporated from 0% up to 60%. With these models it is possible to calculate beforehand the final ions concentrations after a given percentage of evaporated water. It allows to design brines processing and select the purification techniques without exhausting and time-consuming tests. Nowadays there are no tools that allows to do that, in consequence, each company must perform rigorous and numerous tests with its brines. Results of these work show that ionic strength is the parameter that unified brines behavior even if initial composition could be different. In consequence, it could be used as a parameter to describe brine behavior during evaporations.
Fil: Valdez, Silvana Karina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; Argentina
Fil: Orce Schwarz, Agustina María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; Argentina
Fil: Thames Cantolla, Martin Ignacio. Universidad Nacional de Salta. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
BRINES
EVAPORATION
IONIC STRENGTH
IONS CONCENTRATIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/230301

id CONICETDig_7aae83a40a6a925dd5b46c674acaa359
oai_identifier_str oai:ri.conicet.gov.ar:11336/230301
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Empirical models to determine ions concentrations in lithium brines with high ionic strengthValdez, Silvana KarinaOrce Schwarz, Agustina MaríaThames Cantolla, Martin IgnacioBRINESEVAPORATIONIONIC STRENGTHIONS CONCENTRATIONShttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Argentina Puna brines are complex systems in which ions such as Na+, K+, Li+, Mg2+, Ca2+, SO4 2− , and B4O7 2− are presents. To obtain lithium carbonate from brines, they must be treated in order to increase its lithium concentrations and to eliminate the others ions that are presents in the brines. During concentration some salts can reach their solubility products (kps) and crystallize, producing different solid-liquid equilibriums. In order to design and select the process to purify the brine before lithium salts precipitation, it is necessary to know the other ions concentrations. Ion concentrations in solutions can be calculated based on the salts coefficient activities using Pitzer’s model and its modifications. These methods have the restriction that can only be applied to solutions with ionic strength values up to 6 molal. The state of the art shows that the approach to study the equilibrium in complex system is to consider it as binary, ternary, quaternary and quinary systems. When ionic strength values are higher than 6 m the systems studied are binaries or have symmetrical ions. Brines of the Argentina Puna have, in general, initial ionic strength values around 6 molal and it increases when the brine is concentrated by evaporation, so the available thermodynamical models cannot be used to determine, beforehand, the final composition of a certain brine. In this work four different brines from four different Puna plateau in Argentina were evaporated to several degrees and ionic strength was calculated from the chemical brine’s composition after each evaporation test. Ionic strength was found to correlate with the percentage of eliminated water following two different simple mathematical models, depending on the initial sulphate concentration of the brine and the possibility of its precipitation. Models to estimate the concentration of diluted ions of commercial value such as Li+, K+, and Mg2+ as function of ionic strength were also proposed. Ion concentrations could be modeled as function of the amount of eliminated water, once the correct relationship between this parameter and the ionic strength of the brine is established. These models correlate accurately ionic strength and ion concentrations for an ionic strength range from 4.8 to 15.4 molal; corresponding to percentages of water evaporated from 0% up to 60%. With these models it is possible to calculate beforehand the final ions concentrations after a given percentage of evaporated water. It allows to design brines processing and select the purification techniques without exhausting and time-consuming tests. Nowadays there are no tools that allows to do that, in consequence, each company must perform rigorous and numerous tests with its brines. Results of these work show that ionic strength is the parameter that unified brines behavior even if initial composition could be different. In consequence, it could be used as a parameter to describe brine behavior during evaporations.Fil: Valdez, Silvana Karina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; ArgentinaFil: Orce Schwarz, Agustina María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; ArgentinaFil: Thames Cantolla, Martin Ignacio. Universidad Nacional de Salta. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2023-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/230301Valdez, Silvana Karina; Orce Schwarz, Agustina María; Thames Cantolla, Martin Ignacio; Empirical models to determine ions concentrations in lithium brines with high ionic strength; Elsevier; Results in Engineering; 18; 5-2023; 1-102590-1230CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2590123023002724info:eu-repo/semantics/altIdentifier/doi/10.1016/j.rineng.2023.101145info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:39:51Zoai:ri.conicet.gov.ar:11336/230301instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:39:51.589CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Empirical models to determine ions concentrations in lithium brines with high ionic strength
title Empirical models to determine ions concentrations in lithium brines with high ionic strength
spellingShingle Empirical models to determine ions concentrations in lithium brines with high ionic strength
Valdez, Silvana Karina
BRINES
EVAPORATION
IONIC STRENGTH
IONS CONCENTRATIONS
title_short Empirical models to determine ions concentrations in lithium brines with high ionic strength
title_full Empirical models to determine ions concentrations in lithium brines with high ionic strength
title_fullStr Empirical models to determine ions concentrations in lithium brines with high ionic strength
title_full_unstemmed Empirical models to determine ions concentrations in lithium brines with high ionic strength
title_sort Empirical models to determine ions concentrations in lithium brines with high ionic strength
dc.creator.none.fl_str_mv Valdez, Silvana Karina
Orce Schwarz, Agustina María
Thames Cantolla, Martin Ignacio
author Valdez, Silvana Karina
author_facet Valdez, Silvana Karina
Orce Schwarz, Agustina María
Thames Cantolla, Martin Ignacio
author_role author
author2 Orce Schwarz, Agustina María
Thames Cantolla, Martin Ignacio
author2_role author
author
dc.subject.none.fl_str_mv BRINES
EVAPORATION
IONIC STRENGTH
IONS CONCENTRATIONS
topic BRINES
EVAPORATION
IONIC STRENGTH
IONS CONCENTRATIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Argentina Puna brines are complex systems in which ions such as Na+, K+, Li+, Mg2+, Ca2+, SO4 2− , and B4O7 2− are presents. To obtain lithium carbonate from brines, they must be treated in order to increase its lithium concentrations and to eliminate the others ions that are presents in the brines. During concentration some salts can reach their solubility products (kps) and crystallize, producing different solid-liquid equilibriums. In order to design and select the process to purify the brine before lithium salts precipitation, it is necessary to know the other ions concentrations. Ion concentrations in solutions can be calculated based on the salts coefficient activities using Pitzer’s model and its modifications. These methods have the restriction that can only be applied to solutions with ionic strength values up to 6 molal. The state of the art shows that the approach to study the equilibrium in complex system is to consider it as binary, ternary, quaternary and quinary systems. When ionic strength values are higher than 6 m the systems studied are binaries or have symmetrical ions. Brines of the Argentina Puna have, in general, initial ionic strength values around 6 molal and it increases when the brine is concentrated by evaporation, so the available thermodynamical models cannot be used to determine, beforehand, the final composition of a certain brine. In this work four different brines from four different Puna plateau in Argentina were evaporated to several degrees and ionic strength was calculated from the chemical brine’s composition after each evaporation test. Ionic strength was found to correlate with the percentage of eliminated water following two different simple mathematical models, depending on the initial sulphate concentration of the brine and the possibility of its precipitation. Models to estimate the concentration of diluted ions of commercial value such as Li+, K+, and Mg2+ as function of ionic strength were also proposed. Ion concentrations could be modeled as function of the amount of eliminated water, once the correct relationship between this parameter and the ionic strength of the brine is established. These models correlate accurately ionic strength and ion concentrations for an ionic strength range from 4.8 to 15.4 molal; corresponding to percentages of water evaporated from 0% up to 60%. With these models it is possible to calculate beforehand the final ions concentrations after a given percentage of evaporated water. It allows to design brines processing and select the purification techniques without exhausting and time-consuming tests. Nowadays there are no tools that allows to do that, in consequence, each company must perform rigorous and numerous tests with its brines. Results of these work show that ionic strength is the parameter that unified brines behavior even if initial composition could be different. In consequence, it could be used as a parameter to describe brine behavior during evaporations.
Fil: Valdez, Silvana Karina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; Argentina
Fil: Orce Schwarz, Agustina María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; Argentina
Fil: Thames Cantolla, Martin Ignacio. Universidad Nacional de Salta. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Argentina Puna brines are complex systems in which ions such as Na+, K+, Li+, Mg2+, Ca2+, SO4 2− , and B4O7 2− are presents. To obtain lithium carbonate from brines, they must be treated in order to increase its lithium concentrations and to eliminate the others ions that are presents in the brines. During concentration some salts can reach their solubility products (kps) and crystallize, producing different solid-liquid equilibriums. In order to design and select the process to purify the brine before lithium salts precipitation, it is necessary to know the other ions concentrations. Ion concentrations in solutions can be calculated based on the salts coefficient activities using Pitzer’s model and its modifications. These methods have the restriction that can only be applied to solutions with ionic strength values up to 6 molal. The state of the art shows that the approach to study the equilibrium in complex system is to consider it as binary, ternary, quaternary and quinary systems. When ionic strength values are higher than 6 m the systems studied are binaries or have symmetrical ions. Brines of the Argentina Puna have, in general, initial ionic strength values around 6 molal and it increases when the brine is concentrated by evaporation, so the available thermodynamical models cannot be used to determine, beforehand, the final composition of a certain brine. In this work four different brines from four different Puna plateau in Argentina were evaporated to several degrees and ionic strength was calculated from the chemical brine’s composition after each evaporation test. Ionic strength was found to correlate with the percentage of eliminated water following two different simple mathematical models, depending on the initial sulphate concentration of the brine and the possibility of its precipitation. Models to estimate the concentration of diluted ions of commercial value such as Li+, K+, and Mg2+ as function of ionic strength were also proposed. Ion concentrations could be modeled as function of the amount of eliminated water, once the correct relationship between this parameter and the ionic strength of the brine is established. These models correlate accurately ionic strength and ion concentrations for an ionic strength range from 4.8 to 15.4 molal; corresponding to percentages of water evaporated from 0% up to 60%. With these models it is possible to calculate beforehand the final ions concentrations after a given percentage of evaporated water. It allows to design brines processing and select the purification techniques without exhausting and time-consuming tests. Nowadays there are no tools that allows to do that, in consequence, each company must perform rigorous and numerous tests with its brines. Results of these work show that ionic strength is the parameter that unified brines behavior even if initial composition could be different. In consequence, it could be used as a parameter to describe brine behavior during evaporations.
publishDate 2023
dc.date.none.fl_str_mv 2023-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/230301
Valdez, Silvana Karina; Orce Schwarz, Agustina María; Thames Cantolla, Martin Ignacio; Empirical models to determine ions concentrations in lithium brines with high ionic strength; Elsevier; Results in Engineering; 18; 5-2023; 1-10
2590-1230
CONICET Digital
CONICET
url http://hdl.handle.net/11336/230301
identifier_str_mv Valdez, Silvana Karina; Orce Schwarz, Agustina María; Thames Cantolla, Martin Ignacio; Empirical models to determine ions concentrations in lithium brines with high ionic strength; Elsevier; Results in Engineering; 18; 5-2023; 1-10
2590-1230
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2590123023002724
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.rineng.2023.101145
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083514013843456
score 13.22299