Encoding sound in the cochlea: from receptor potential to afferent discharge

Autores
Rutherford, Mark A.; von Gersdorff, Henrique; Goutman, Juan Diego
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Ribbon-class synapses in the ear achieve analog to digital transformation of a continuously graded membrane potential to all-or-none spikes. In mammals, several auditory nerve fibres (ANFs) carry information from each inner hair cell (IHC) to the brain in parallel. Heterogeneity of transmission among synapses contributes to the diversity of ANF sound-response properties. In addition to the place code for sound frequency and the rate code for sound level, there is also a temporal code. In series with cochlear amplification and frequency tuning, neural representation of temporal cues over a broad range of sound levels enables auditory comprehension in noisy multi-speaker settings. The IHC membrane time constant introduces a low-pass filter that attenuates fluctuations of the receptor potential above 1?2 kHz. The ANF spike generator adds a high-pass filter via its depolarization-rate threshold that rejects slow changes in the postsynaptic potential and its phasic response property that ensures one spike per depolarization. Synaptic transmission involves several stochastic subcellular processes between IHC depolarization and ANF spike generation, introducing delay and jitter that limits the speed and precision of spike timing. ANFs spike at a preferred phase of periodic sounds in a process called phase-locking that is limited to frequencies below a few kilohertz by both the IHC receptor potential and the jitter in synaptic transmission. During phase-locking to periodic sounds of increasing intensity, faster and facilitated activation of synaptic transmission and spike generation may be offset by presynaptic depletion of synaptic vesicles, resulting in relatively small changes in response phase. Here we review encoding of spike-timing at cochlear ribbon synapses.
Fil: Rutherford, Mark A.. Washington University in St. Louis; Estados Unidos
Fil: von Gersdorff, Henrique. Oregon Health and Sciences University; Estados Unidos
Fil: Goutman, Juan Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina
Materia
FIRST-SPIKE LATENCY
PHASE-LOCKING
RECEPTOR POTENTIAL
RIBBON SYNAPSE
SYNAPTIC DELAY
TEMPORAL CODE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/138050

id CONICETDig_7a5e4f06e401600bbe88e6b8db0ad7bc
oai_identifier_str oai:ri.conicet.gov.ar:11336/138050
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Encoding sound in the cochlea: from receptor potential to afferent dischargeRutherford, Mark A.von Gersdorff, HenriqueGoutman, Juan DiegoFIRST-SPIKE LATENCYPHASE-LOCKINGRECEPTOR POTENTIALRIBBON SYNAPSESYNAPTIC DELAYTEMPORAL CODEhttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3Ribbon-class synapses in the ear achieve analog to digital transformation of a continuously graded membrane potential to all-or-none spikes. In mammals, several auditory nerve fibres (ANFs) carry information from each inner hair cell (IHC) to the brain in parallel. Heterogeneity of transmission among synapses contributes to the diversity of ANF sound-response properties. In addition to the place code for sound frequency and the rate code for sound level, there is also a temporal code. In series with cochlear amplification and frequency tuning, neural representation of temporal cues over a broad range of sound levels enables auditory comprehension in noisy multi-speaker settings. The IHC membrane time constant introduces a low-pass filter that attenuates fluctuations of the receptor potential above 1?2 kHz. The ANF spike generator adds a high-pass filter via its depolarization-rate threshold that rejects slow changes in the postsynaptic potential and its phasic response property that ensures one spike per depolarization. Synaptic transmission involves several stochastic subcellular processes between IHC depolarization and ANF spike generation, introducing delay and jitter that limits the speed and precision of spike timing. ANFs spike at a preferred phase of periodic sounds in a process called phase-locking that is limited to frequencies below a few kilohertz by both the IHC receptor potential and the jitter in synaptic transmission. During phase-locking to periodic sounds of increasing intensity, faster and facilitated activation of synaptic transmission and spike generation may be offset by presynaptic depletion of synaptic vesicles, resulting in relatively small changes in response phase. Here we review encoding of spike-timing at cochlear ribbon synapses.Fil: Rutherford, Mark A.. Washington University in St. Louis; Estados UnidosFil: von Gersdorff, Henrique. Oregon Health and Sciences University; Estados UnidosFil: Goutman, Juan Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaWiley Blackwell Publishing, Inc2021-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/138050Rutherford, Mark A.; von Gersdorff, Henrique; Goutman, Juan Diego; Encoding sound in the cochlea: from receptor potential to afferent discharge; Wiley Blackwell Publishing, Inc; The Journal Of Physiology; 599; 10; 5-2021; 2527-25570022-37511469-7793CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1113/JP279189info:eu-repo/semantics/altIdentifier/url/https://physoc.onlinelibrary.wiley.com/doi/pdf/10.1113/JP279189info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:41:45Zoai:ri.conicet.gov.ar:11336/138050instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:41:45.557CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Encoding sound in the cochlea: from receptor potential to afferent discharge
title Encoding sound in the cochlea: from receptor potential to afferent discharge
spellingShingle Encoding sound in the cochlea: from receptor potential to afferent discharge
Rutherford, Mark A.
FIRST-SPIKE LATENCY
PHASE-LOCKING
RECEPTOR POTENTIAL
RIBBON SYNAPSE
SYNAPTIC DELAY
TEMPORAL CODE
title_short Encoding sound in the cochlea: from receptor potential to afferent discharge
title_full Encoding sound in the cochlea: from receptor potential to afferent discharge
title_fullStr Encoding sound in the cochlea: from receptor potential to afferent discharge
title_full_unstemmed Encoding sound in the cochlea: from receptor potential to afferent discharge
title_sort Encoding sound in the cochlea: from receptor potential to afferent discharge
dc.creator.none.fl_str_mv Rutherford, Mark A.
von Gersdorff, Henrique
Goutman, Juan Diego
author Rutherford, Mark A.
author_facet Rutherford, Mark A.
von Gersdorff, Henrique
Goutman, Juan Diego
author_role author
author2 von Gersdorff, Henrique
Goutman, Juan Diego
author2_role author
author
dc.subject.none.fl_str_mv FIRST-SPIKE LATENCY
PHASE-LOCKING
RECEPTOR POTENTIAL
RIBBON SYNAPSE
SYNAPTIC DELAY
TEMPORAL CODE
topic FIRST-SPIKE LATENCY
PHASE-LOCKING
RECEPTOR POTENTIAL
RIBBON SYNAPSE
SYNAPTIC DELAY
TEMPORAL CODE
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.1
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv Ribbon-class synapses in the ear achieve analog to digital transformation of a continuously graded membrane potential to all-or-none spikes. In mammals, several auditory nerve fibres (ANFs) carry information from each inner hair cell (IHC) to the brain in parallel. Heterogeneity of transmission among synapses contributes to the diversity of ANF sound-response properties. In addition to the place code for sound frequency and the rate code for sound level, there is also a temporal code. In series with cochlear amplification and frequency tuning, neural representation of temporal cues over a broad range of sound levels enables auditory comprehension in noisy multi-speaker settings. The IHC membrane time constant introduces a low-pass filter that attenuates fluctuations of the receptor potential above 1?2 kHz. The ANF spike generator adds a high-pass filter via its depolarization-rate threshold that rejects slow changes in the postsynaptic potential and its phasic response property that ensures one spike per depolarization. Synaptic transmission involves several stochastic subcellular processes between IHC depolarization and ANF spike generation, introducing delay and jitter that limits the speed and precision of spike timing. ANFs spike at a preferred phase of periodic sounds in a process called phase-locking that is limited to frequencies below a few kilohertz by both the IHC receptor potential and the jitter in synaptic transmission. During phase-locking to periodic sounds of increasing intensity, faster and facilitated activation of synaptic transmission and spike generation may be offset by presynaptic depletion of synaptic vesicles, resulting in relatively small changes in response phase. Here we review encoding of spike-timing at cochlear ribbon synapses.
Fil: Rutherford, Mark A.. Washington University in St. Louis; Estados Unidos
Fil: von Gersdorff, Henrique. Oregon Health and Sciences University; Estados Unidos
Fil: Goutman, Juan Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina
description Ribbon-class synapses in the ear achieve analog to digital transformation of a continuously graded membrane potential to all-or-none spikes. In mammals, several auditory nerve fibres (ANFs) carry information from each inner hair cell (IHC) to the brain in parallel. Heterogeneity of transmission among synapses contributes to the diversity of ANF sound-response properties. In addition to the place code for sound frequency and the rate code for sound level, there is also a temporal code. In series with cochlear amplification and frequency tuning, neural representation of temporal cues over a broad range of sound levels enables auditory comprehension in noisy multi-speaker settings. The IHC membrane time constant introduces a low-pass filter that attenuates fluctuations of the receptor potential above 1?2 kHz. The ANF spike generator adds a high-pass filter via its depolarization-rate threshold that rejects slow changes in the postsynaptic potential and its phasic response property that ensures one spike per depolarization. Synaptic transmission involves several stochastic subcellular processes between IHC depolarization and ANF spike generation, introducing delay and jitter that limits the speed and precision of spike timing. ANFs spike at a preferred phase of periodic sounds in a process called phase-locking that is limited to frequencies below a few kilohertz by both the IHC receptor potential and the jitter in synaptic transmission. During phase-locking to periodic sounds of increasing intensity, faster and facilitated activation of synaptic transmission and spike generation may be offset by presynaptic depletion of synaptic vesicles, resulting in relatively small changes in response phase. Here we review encoding of spike-timing at cochlear ribbon synapses.
publishDate 2021
dc.date.none.fl_str_mv 2021-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/138050
Rutherford, Mark A.; von Gersdorff, Henrique; Goutman, Juan Diego; Encoding sound in the cochlea: from receptor potential to afferent discharge; Wiley Blackwell Publishing, Inc; The Journal Of Physiology; 599; 10; 5-2021; 2527-2557
0022-3751
1469-7793
CONICET Digital
CONICET
url http://hdl.handle.net/11336/138050
identifier_str_mv Rutherford, Mark A.; von Gersdorff, Henrique; Goutman, Juan Diego; Encoding sound in the cochlea: from receptor potential to afferent discharge; Wiley Blackwell Publishing, Inc; The Journal Of Physiology; 599; 10; 5-2021; 2527-2557
0022-3751
1469-7793
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1113/JP279189
info:eu-repo/semantics/altIdentifier/url/https://physoc.onlinelibrary.wiley.com/doi/pdf/10.1113/JP279189
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782099501088768
score 12.982451