A class of prime fusion categories of dimension 2^N
- Autores
- Jingcheng, Dong; Natale, Sonia Lujan; Hua, Sun
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study a class of strictly weakly integral fusion categories I_{N,ζ}, where N≥1 is a natural number and ζ is a 2^Nth root of unity, that we call N-Ising fusion categories. An N-Ising fusion category has Frobenius-Perron dimension 2^{N+1} and is a graded extension of a pointed fusion category of rank 2 by the cyclic group of order Z_{2^N}. We show that every braided N-Ising fusion category is prime and also that there exists a slightly degenerate N-Ising braided fusion category for all N>2. We also prove a structure result for braided extensions of a rank 2 pointed fusion category in terms of braided N-Ising fusion categories.
Fil: Jingcheng, Dong. Nanjing University Of Information Science & Technology; China
Fil: Natale, Sonia Lujan. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Hua, Sun. Yangzhou University; China - Materia
-
FUSION CATEGORY
BRAIDES FUSION CATEGORY
GROUP EXTENSION
ISING CATEGORY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/172764
Ver los metadatos del registro completo
id |
CONICETDig_793c19f7b083cf200072eb34a36010da |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/172764 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A class of prime fusion categories of dimension 2^NJingcheng, DongNatale, Sonia LujanHua, SunFUSION CATEGORYBRAIDES FUSION CATEGORYGROUP EXTENSIONISING CATEGORYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study a class of strictly weakly integral fusion categories I_{N,ζ}, where N≥1 is a natural number and ζ is a 2^Nth root of unity, that we call N-Ising fusion categories. An N-Ising fusion category has Frobenius-Perron dimension 2^{N+1} and is a graded extension of a pointed fusion category of rank 2 by the cyclic group of order Z_{2^N}. We show that every braided N-Ising fusion category is prime and also that there exists a slightly degenerate N-Ising braided fusion category for all N>2. We also prove a structure result for braided extensions of a rank 2 pointed fusion category in terms of braided N-Ising fusion categories.Fil: Jingcheng, Dong. Nanjing University Of Information Science & Technology; ChinaFil: Natale, Sonia Lujan. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Hua, Sun. Yangzhou University; ChinaUniversity of Albany2021-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/172764Jingcheng, Dong; Natale, Sonia Lujan; Hua, Sun; A class of prime fusion categories of dimension 2^N; University of Albany; New York Journal of Mathematics; 27; 2-2021; 141-1631076-9803CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://nyjm.albany.edu/j/2021/27-5p.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:24:21Zoai:ri.conicet.gov.ar:11336/172764instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:24:21.856CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A class of prime fusion categories of dimension 2^N |
title |
A class of prime fusion categories of dimension 2^N |
spellingShingle |
A class of prime fusion categories of dimension 2^N Jingcheng, Dong FUSION CATEGORY BRAIDES FUSION CATEGORY GROUP EXTENSION ISING CATEGORY |
title_short |
A class of prime fusion categories of dimension 2^N |
title_full |
A class of prime fusion categories of dimension 2^N |
title_fullStr |
A class of prime fusion categories of dimension 2^N |
title_full_unstemmed |
A class of prime fusion categories of dimension 2^N |
title_sort |
A class of prime fusion categories of dimension 2^N |
dc.creator.none.fl_str_mv |
Jingcheng, Dong Natale, Sonia Lujan Hua, Sun |
author |
Jingcheng, Dong |
author_facet |
Jingcheng, Dong Natale, Sonia Lujan Hua, Sun |
author_role |
author |
author2 |
Natale, Sonia Lujan Hua, Sun |
author2_role |
author author |
dc.subject.none.fl_str_mv |
FUSION CATEGORY BRAIDES FUSION CATEGORY GROUP EXTENSION ISING CATEGORY |
topic |
FUSION CATEGORY BRAIDES FUSION CATEGORY GROUP EXTENSION ISING CATEGORY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study a class of strictly weakly integral fusion categories I_{N,ζ}, where N≥1 is a natural number and ζ is a 2^Nth root of unity, that we call N-Ising fusion categories. An N-Ising fusion category has Frobenius-Perron dimension 2^{N+1} and is a graded extension of a pointed fusion category of rank 2 by the cyclic group of order Z_{2^N}. We show that every braided N-Ising fusion category is prime and also that there exists a slightly degenerate N-Ising braided fusion category for all N>2. We also prove a structure result for braided extensions of a rank 2 pointed fusion category in terms of braided N-Ising fusion categories. Fil: Jingcheng, Dong. Nanjing University Of Information Science & Technology; China Fil: Natale, Sonia Lujan. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Hua, Sun. Yangzhou University; China |
description |
We study a class of strictly weakly integral fusion categories I_{N,ζ}, where N≥1 is a natural number and ζ is a 2^Nth root of unity, that we call N-Ising fusion categories. An N-Ising fusion category has Frobenius-Perron dimension 2^{N+1} and is a graded extension of a pointed fusion category of rank 2 by the cyclic group of order Z_{2^N}. We show that every braided N-Ising fusion category is prime and also that there exists a slightly degenerate N-Ising braided fusion category for all N>2. We also prove a structure result for braided extensions of a rank 2 pointed fusion category in terms of braided N-Ising fusion categories. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/172764 Jingcheng, Dong; Natale, Sonia Lujan; Hua, Sun; A class of prime fusion categories of dimension 2^N; University of Albany; New York Journal of Mathematics; 27; 2-2021; 141-163 1076-9803 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/172764 |
identifier_str_mv |
Jingcheng, Dong; Natale, Sonia Lujan; Hua, Sun; A class of prime fusion categories of dimension 2^N; University of Albany; New York Journal of Mathematics; 27; 2-2021; 141-163 1076-9803 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://nyjm.albany.edu/j/2021/27-5p.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
University of Albany |
publisher.none.fl_str_mv |
University of Albany |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614239799476224 |
score |
13.070432 |