Classification of Integral Modular Categories of Frobenius–Perron Dimension pq4 and p2q2
- Autores
- Bruillard, Paul; Galindo, César; Hong, Seung Moon; Kashina, Yevgenia; Naidu, Deepak; Natale, Sonia Lujan; Plavnik, Julia Yael; Rowell, Eric C.
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We classify integral modular categories of dimension pq^4 and p^2q^2, where p and q are distinct primes. We show that such categories are always group-theoretical except for categories of dimension 4q^2. In these cases there are well-known examples of non-group-theoretical categories, coming from centers of Tambara-Yamagami categories and quantum groups. We show that a non-group-theoretical integral modular category of dimension 4q^2 is equivalent to either one of these well-known examples or is of dimension 36 and is twist-equivalent to fusion categories arising from a certain quantum group.
Fil: Bruillard, Paul. Texas A&M University; Estados Unidos
Fil: Galindo, César. Universidad de Los Andes; Colombia
Fil: Hong, Seung Moon. University of Toledo; Estados Unidos
Fil: Kashina, Yevgenia. DePaul University; Estados Unidos
Fil: Naidu, Deepak. Northern Illinois University; Estados Unidos
Fil: Natale, Sonia Lujan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Plavnik, Julia Yael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Rowell, Eric C.. Texas A&M University; Estados Unidos - Materia
-
Fusion Category
Modular Category
Group-Theoretical Fusion Category - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/20970
Ver los metadatos del registro completo
id |
CONICETDig_0477fe05e10be8c5c1d2e75777d3a4d2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/20970 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Classification of Integral Modular Categories of Frobenius–Perron Dimension pq4 and p2q2Bruillard, PaulGalindo, CésarHong, Seung MoonKashina, YevgeniaNaidu, DeepakNatale, Sonia LujanPlavnik, Julia YaelRowell, Eric C.Fusion CategoryModular CategoryGroup-Theoretical Fusion Categoryhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We classify integral modular categories of dimension pq^4 and p^2q^2, where p and q are distinct primes. We show that such categories are always group-theoretical except for categories of dimension 4q^2. In these cases there are well-known examples of non-group-theoretical categories, coming from centers of Tambara-Yamagami categories and quantum groups. We show that a non-group-theoretical integral modular category of dimension 4q^2 is equivalent to either one of these well-known examples or is of dimension 36 and is twist-equivalent to fusion categories arising from a certain quantum group.Fil: Bruillard, Paul. Texas A&M University; Estados UnidosFil: Galindo, César. Universidad de Los Andes; ColombiaFil: Hong, Seung Moon. University of Toledo; Estados UnidosFil: Kashina, Yevgenia. DePaul University; Estados UnidosFil: Naidu, Deepak. Northern Illinois University; Estados UnidosFil: Natale, Sonia Lujan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Plavnik, Julia Yael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Rowell, Eric C.. Texas A&M University; Estados UnidosCanadian Mathematical Soc2014-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/20970Bruillard, Paul; Galindo, César; Hong, Seung Moon; Kashina, Yevgenia; Naidu, Deepak; et al.; Classification of Integral Modular Categories of Frobenius–Perron Dimension pq4 and p2q2; Canadian Mathematical Soc; Canadian Mathematical Bulletin-bulletin Canadien de Mathematiques; 57; 4; 4-2014; 721-7340008-4395CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4153/CMB-2013-042-6info:eu-repo/semantics/altIdentifier/url/https://cms.math.ca/10.4153/CMB-2013-042-6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:13:05Zoai:ri.conicet.gov.ar:11336/20970instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:13:06.055CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Classification of Integral Modular Categories of Frobenius–Perron Dimension pq4 and p2q2 |
title |
Classification of Integral Modular Categories of Frobenius–Perron Dimension pq4 and p2q2 |
spellingShingle |
Classification of Integral Modular Categories of Frobenius–Perron Dimension pq4 and p2q2 Bruillard, Paul Fusion Category Modular Category Group-Theoretical Fusion Category |
title_short |
Classification of Integral Modular Categories of Frobenius–Perron Dimension pq4 and p2q2 |
title_full |
Classification of Integral Modular Categories of Frobenius–Perron Dimension pq4 and p2q2 |
title_fullStr |
Classification of Integral Modular Categories of Frobenius–Perron Dimension pq4 and p2q2 |
title_full_unstemmed |
Classification of Integral Modular Categories of Frobenius–Perron Dimension pq4 and p2q2 |
title_sort |
Classification of Integral Modular Categories of Frobenius–Perron Dimension pq4 and p2q2 |
dc.creator.none.fl_str_mv |
Bruillard, Paul Galindo, César Hong, Seung Moon Kashina, Yevgenia Naidu, Deepak Natale, Sonia Lujan Plavnik, Julia Yael Rowell, Eric C. |
author |
Bruillard, Paul |
author_facet |
Bruillard, Paul Galindo, César Hong, Seung Moon Kashina, Yevgenia Naidu, Deepak Natale, Sonia Lujan Plavnik, Julia Yael Rowell, Eric C. |
author_role |
author |
author2 |
Galindo, César Hong, Seung Moon Kashina, Yevgenia Naidu, Deepak Natale, Sonia Lujan Plavnik, Julia Yael Rowell, Eric C. |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
Fusion Category Modular Category Group-Theoretical Fusion Category |
topic |
Fusion Category Modular Category Group-Theoretical Fusion Category |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We classify integral modular categories of dimension pq^4 and p^2q^2, where p and q are distinct primes. We show that such categories are always group-theoretical except for categories of dimension 4q^2. In these cases there are well-known examples of non-group-theoretical categories, coming from centers of Tambara-Yamagami categories and quantum groups. We show that a non-group-theoretical integral modular category of dimension 4q^2 is equivalent to either one of these well-known examples or is of dimension 36 and is twist-equivalent to fusion categories arising from a certain quantum group. Fil: Bruillard, Paul. Texas A&M University; Estados Unidos Fil: Galindo, César. Universidad de Los Andes; Colombia Fil: Hong, Seung Moon. University of Toledo; Estados Unidos Fil: Kashina, Yevgenia. DePaul University; Estados Unidos Fil: Naidu, Deepak. Northern Illinois University; Estados Unidos Fil: Natale, Sonia Lujan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Plavnik, Julia Yael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Rowell, Eric C.. Texas A&M University; Estados Unidos |
description |
We classify integral modular categories of dimension pq^4 and p^2q^2, where p and q are distinct primes. We show that such categories are always group-theoretical except for categories of dimension 4q^2. In these cases there are well-known examples of non-group-theoretical categories, coming from centers of Tambara-Yamagami categories and quantum groups. We show that a non-group-theoretical integral modular category of dimension 4q^2 is equivalent to either one of these well-known examples or is of dimension 36 and is twist-equivalent to fusion categories arising from a certain quantum group. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/20970 Bruillard, Paul; Galindo, César; Hong, Seung Moon; Kashina, Yevgenia; Naidu, Deepak; et al.; Classification of Integral Modular Categories of Frobenius–Perron Dimension pq4 and p2q2; Canadian Mathematical Soc; Canadian Mathematical Bulletin-bulletin Canadien de Mathematiques; 57; 4; 4-2014; 721-734 0008-4395 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/20970 |
identifier_str_mv |
Bruillard, Paul; Galindo, César; Hong, Seung Moon; Kashina, Yevgenia; Naidu, Deepak; et al.; Classification of Integral Modular Categories of Frobenius–Perron Dimension pq4 and p2q2; Canadian Mathematical Soc; Canadian Mathematical Bulletin-bulletin Canadien de Mathematiques; 57; 4; 4-2014; 721-734 0008-4395 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.4153/CMB-2013-042-6 info:eu-repo/semantics/altIdentifier/url/https://cms.math.ca/10.4153/CMB-2013-042-6 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Canadian Mathematical Soc |
publisher.none.fl_str_mv |
Canadian Mathematical Soc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980688954916864 |
score |
12.993085 |