Biotic interactions in species distribution models enhance model performance and shed light on natural history of rare birds: a case study using the straight-billed reedhaunter Lim...

Autores
Palacio, Facundo Xavier; Girini, Juan Manuel
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Species distribution models (SDMs) have become a workhorse to explain, understand and predict distributions of birds. However, SDMs at broad scales are typically built using climatic variables, while ignoring the effects of biotic interactions. Although its role still remains controversial, the inclusion of biotic interactions into SDMs could confirm and/or provide new ecological insights of poorly-known species. We modeled the distribution of the rare South American straight-billed reedhaunter Limnoctites rectirostris (Furnariidae), a specialist of marshy areas linked to the spiny herb eryngo (Eryngium spp., Apiaceae), which provides the main food and nest resources. To do this, we first modeled the distribution of three eryngo species considered as the main biotic interactors (E. eburneum, E. horridum and E. pandanifolium) and included them into the straight-billed reedhaunter SDM. Second, we analyzed niche overlap between the straight-billed reedhaunter and eryngos in terms of environmental variables using dynamic range boxes, a novel approach to quantify size of n-dimensional hypervolumes. The inclusion of biotic interactions improved model performance relative to a model with climatic variables only. Climatic suitability of E. eburneum and mean temperature of wettest quarter were the most important predictors. By contrast, E horridum and E. pandanifolium resulted in poor predictors, suggesting that the straight-billed reedhaunter's relative dependence on each eryngo species is different. The three eryngo environmental spaces largely covered the environmental space of the straight-billed reedhaunter, but the opposite was not true. Our findings suggest that biotic interactions play an important role in explaining and predicting the distribution of a rare bird at macro-scales, and that the assessment of niche overlap between interactors may confirm or improve the autoecological understanding of rare and cryptic birds. We advocate the use of an integrative modeling approach including climate and biotic interactions into SDMs to enhance ecological knowledge on poorly-known bird species.
Fil: Palacio, Facundo Xavier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Zoología de Vertebrados. Sección Ornitología; Argentina
Fil: Girini, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Zoología de Vertebrados. Sección Ornitología; Argentina
Materia
ERYNGIUM
MAXENT
NICHE OVERLAP
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/100359

id CONICETDig_78815ca53cf62ca4c8ccbd56419097ad
oai_identifier_str oai:ri.conicet.gov.ar:11336/100359
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Biotic interactions in species distribution models enhance model performance and shed light on natural history of rare birds: a case study using the straight-billed reedhaunter Limnoctites rectirostrisPalacio, Facundo XavierGirini, Juan ManuelERYNGIUMMAXENTNICHE OVERLAPhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Species distribution models (SDMs) have become a workhorse to explain, understand and predict distributions of birds. However, SDMs at broad scales are typically built using climatic variables, while ignoring the effects of biotic interactions. Although its role still remains controversial, the inclusion of biotic interactions into SDMs could confirm and/or provide new ecological insights of poorly-known species. We modeled the distribution of the rare South American straight-billed reedhaunter Limnoctites rectirostris (Furnariidae), a specialist of marshy areas linked to the spiny herb eryngo (Eryngium spp., Apiaceae), which provides the main food and nest resources. To do this, we first modeled the distribution of three eryngo species considered as the main biotic interactors (E. eburneum, E. horridum and E. pandanifolium) and included them into the straight-billed reedhaunter SDM. Second, we analyzed niche overlap between the straight-billed reedhaunter and eryngos in terms of environmental variables using dynamic range boxes, a novel approach to quantify size of n-dimensional hypervolumes. The inclusion of biotic interactions improved model performance relative to a model with climatic variables only. Climatic suitability of E. eburneum and mean temperature of wettest quarter were the most important predictors. By contrast, E horridum and E. pandanifolium resulted in poor predictors, suggesting that the straight-billed reedhaunter's relative dependence on each eryngo species is different. The three eryngo environmental spaces largely covered the environmental space of the straight-billed reedhaunter, but the opposite was not true. Our findings suggest that biotic interactions play an important role in explaining and predicting the distribution of a rare bird at macro-scales, and that the assessment of niche overlap between interactors may confirm or improve the autoecological understanding of rare and cryptic birds. We advocate the use of an integrative modeling approach including climate and biotic interactions into SDMs to enhance ecological knowledge on poorly-known bird species.Fil: Palacio, Facundo Xavier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Zoología de Vertebrados. Sección Ornitología; ArgentinaFil: Girini, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Zoología de Vertebrados. Sección Ornitología; ArgentinaWiley Blackwell Publishing, Inc2018-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100359Palacio, Facundo Xavier; Girini, Juan Manuel; Biotic interactions in species distribution models enhance model performance and shed light on natural history of rare birds: a case study using the straight-billed reedhaunter Limnoctites rectirostris; Wiley Blackwell Publishing, Inc; Journal Of Avian Biology; 49; 11; 11-2018; 1-120908-8857CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1111/jav.01743info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1111/jav.01743info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:30Zoai:ri.conicet.gov.ar:11336/100359instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:30.895CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Biotic interactions in species distribution models enhance model performance and shed light on natural history of rare birds: a case study using the straight-billed reedhaunter Limnoctites rectirostris
title Biotic interactions in species distribution models enhance model performance and shed light on natural history of rare birds: a case study using the straight-billed reedhaunter Limnoctites rectirostris
spellingShingle Biotic interactions in species distribution models enhance model performance and shed light on natural history of rare birds: a case study using the straight-billed reedhaunter Limnoctites rectirostris
Palacio, Facundo Xavier
ERYNGIUM
MAXENT
NICHE OVERLAP
title_short Biotic interactions in species distribution models enhance model performance and shed light on natural history of rare birds: a case study using the straight-billed reedhaunter Limnoctites rectirostris
title_full Biotic interactions in species distribution models enhance model performance and shed light on natural history of rare birds: a case study using the straight-billed reedhaunter Limnoctites rectirostris
title_fullStr Biotic interactions in species distribution models enhance model performance and shed light on natural history of rare birds: a case study using the straight-billed reedhaunter Limnoctites rectirostris
title_full_unstemmed Biotic interactions in species distribution models enhance model performance and shed light on natural history of rare birds: a case study using the straight-billed reedhaunter Limnoctites rectirostris
title_sort Biotic interactions in species distribution models enhance model performance and shed light on natural history of rare birds: a case study using the straight-billed reedhaunter Limnoctites rectirostris
dc.creator.none.fl_str_mv Palacio, Facundo Xavier
Girini, Juan Manuel
author Palacio, Facundo Xavier
author_facet Palacio, Facundo Xavier
Girini, Juan Manuel
author_role author
author2 Girini, Juan Manuel
author2_role author
dc.subject.none.fl_str_mv ERYNGIUM
MAXENT
NICHE OVERLAP
topic ERYNGIUM
MAXENT
NICHE OVERLAP
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Species distribution models (SDMs) have become a workhorse to explain, understand and predict distributions of birds. However, SDMs at broad scales are typically built using climatic variables, while ignoring the effects of biotic interactions. Although its role still remains controversial, the inclusion of biotic interactions into SDMs could confirm and/or provide new ecological insights of poorly-known species. We modeled the distribution of the rare South American straight-billed reedhaunter Limnoctites rectirostris (Furnariidae), a specialist of marshy areas linked to the spiny herb eryngo (Eryngium spp., Apiaceae), which provides the main food and nest resources. To do this, we first modeled the distribution of three eryngo species considered as the main biotic interactors (E. eburneum, E. horridum and E. pandanifolium) and included them into the straight-billed reedhaunter SDM. Second, we analyzed niche overlap between the straight-billed reedhaunter and eryngos in terms of environmental variables using dynamic range boxes, a novel approach to quantify size of n-dimensional hypervolumes. The inclusion of biotic interactions improved model performance relative to a model with climatic variables only. Climatic suitability of E. eburneum and mean temperature of wettest quarter were the most important predictors. By contrast, E horridum and E. pandanifolium resulted in poor predictors, suggesting that the straight-billed reedhaunter's relative dependence on each eryngo species is different. The three eryngo environmental spaces largely covered the environmental space of the straight-billed reedhaunter, but the opposite was not true. Our findings suggest that biotic interactions play an important role in explaining and predicting the distribution of a rare bird at macro-scales, and that the assessment of niche overlap between interactors may confirm or improve the autoecological understanding of rare and cryptic birds. We advocate the use of an integrative modeling approach including climate and biotic interactions into SDMs to enhance ecological knowledge on poorly-known bird species.
Fil: Palacio, Facundo Xavier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Zoología de Vertebrados. Sección Ornitología; Argentina
Fil: Girini, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Zoología de Vertebrados. Sección Ornitología; Argentina
description Species distribution models (SDMs) have become a workhorse to explain, understand and predict distributions of birds. However, SDMs at broad scales are typically built using climatic variables, while ignoring the effects of biotic interactions. Although its role still remains controversial, the inclusion of biotic interactions into SDMs could confirm and/or provide new ecological insights of poorly-known species. We modeled the distribution of the rare South American straight-billed reedhaunter Limnoctites rectirostris (Furnariidae), a specialist of marshy areas linked to the spiny herb eryngo (Eryngium spp., Apiaceae), which provides the main food and nest resources. To do this, we first modeled the distribution of three eryngo species considered as the main biotic interactors (E. eburneum, E. horridum and E. pandanifolium) and included them into the straight-billed reedhaunter SDM. Second, we analyzed niche overlap between the straight-billed reedhaunter and eryngos in terms of environmental variables using dynamic range boxes, a novel approach to quantify size of n-dimensional hypervolumes. The inclusion of biotic interactions improved model performance relative to a model with climatic variables only. Climatic suitability of E. eburneum and mean temperature of wettest quarter were the most important predictors. By contrast, E horridum and E. pandanifolium resulted in poor predictors, suggesting that the straight-billed reedhaunter's relative dependence on each eryngo species is different. The three eryngo environmental spaces largely covered the environmental space of the straight-billed reedhaunter, but the opposite was not true. Our findings suggest that biotic interactions play an important role in explaining and predicting the distribution of a rare bird at macro-scales, and that the assessment of niche overlap between interactors may confirm or improve the autoecological understanding of rare and cryptic birds. We advocate the use of an integrative modeling approach including climate and biotic interactions into SDMs to enhance ecological knowledge on poorly-known bird species.
publishDate 2018
dc.date.none.fl_str_mv 2018-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/100359
Palacio, Facundo Xavier; Girini, Juan Manuel; Biotic interactions in species distribution models enhance model performance and shed light on natural history of rare birds: a case study using the straight-billed reedhaunter Limnoctites rectirostris; Wiley Blackwell Publishing, Inc; Journal Of Avian Biology; 49; 11; 11-2018; 1-12
0908-8857
CONICET Digital
CONICET
url http://hdl.handle.net/11336/100359
identifier_str_mv Palacio, Facundo Xavier; Girini, Juan Manuel; Biotic interactions in species distribution models enhance model performance and shed light on natural history of rare birds: a case study using the straight-billed reedhaunter Limnoctites rectirostris; Wiley Blackwell Publishing, Inc; Journal Of Avian Biology; 49; 11; 11-2018; 1-12
0908-8857
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1111/jav.01743
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1111/jav.01743
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269098703060992
score 13.13397