Enhanced electron acceleration in aligned nanowire arrays irradiated at highly relativistic intensities

Autores
Moreau, A.; Hollinger, R.; Calvi, C.; Wang, S.; Wang, Y.; Capeluto, Maria Gabriela; Rockwood, A.; Curtis, A.; Kasdorf, S.; Shlyaptsev, V.N.; Kaymak, V.; Pukhov, A.; Rocca, J.J.
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We report a significant enhancement in both the energy and the flux of relativistic electrons accelerated by ultra-intense laser pulse irradiation (>1 10 21 W cm-2) of near solid density aligned CD2 nanowire arrays in comparison to those from solid CD2 foils irradiated with the same laser pulses. Ultrahigh contrast femtosecond laser pulses penetrate deep into the nanowire array creating a large interaction volume. Detailed three dimensional relativistic particle-in-cell simulations show that electrons originating anywhere along the nanowire length are first driven towards the laser to reach a lower density plasma region near the tip of the nanowires, where they are accelerated to the highest energies. Electrons that reach the lower density plasma experience direct laser acceleration up to the dephasing length, where they outrun the laser pulse. This yields an electron beam characterized by a 3 higher electron temperature and an integrated flux 22.4 larger respect to foil targets. Additionally, the generation of >1 MeV photons were observed to increase up to 4.5.
Fil: Moreau, A.. State University of Colorado - Fort Collins; Estados Unidos
Fil: Hollinger, R.. State University of Colorado - Fort Collins; Estados Unidos
Fil: Calvi, C.. State University of Colorado - Fort Collins; Estados Unidos
Fil: Wang, S.. State University of Colorado - Fort Collins; Estados Unidos
Fil: Wang, Y.. State University of Colorado - Fort Collins; Estados Unidos
Fil: Capeluto, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Rockwood, A.. State University of Colorado - Fort Collins; Estados Unidos
Fil: Curtis, A.. State University of Colorado - Fort Collins; Estados Unidos
Fil: Kasdorf, S.. State University of Colorado - Fort Collins; Estados Unidos
Fil: Shlyaptsev, V.N.. State University of Colorado - Fort Collins; Estados Unidos
Fil: Kaymak, V.. Universitat Dusseldorf; Alemania
Fil: Pukhov, A.. Universitat Dusseldorf; Alemania
Fil: Rocca, J.J.. State University of Colorado - Fort Collins; Estados Unidos
Materia
ELECTRON ACCELERATION
HIGH ENERGY DENSITY PLASMAS
HOT ELECTRONS
LASER-MATTER INTERACTIONS
X-RAYS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/145814

id CONICETDig_78677891bb9cff469bb4bd0bdc5fad83
oai_identifier_str oai:ri.conicet.gov.ar:11336/145814
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Enhanced electron acceleration in aligned nanowire arrays irradiated at highly relativistic intensitiesMoreau, A.Hollinger, R.Calvi, C.Wang, S.Wang, Y.Capeluto, Maria GabrielaRockwood, A.Curtis, A.Kasdorf, S.Shlyaptsev, V.N.Kaymak, V.Pukhov, A.Rocca, J.J.ELECTRON ACCELERATIONHIGH ENERGY DENSITY PLASMASHOT ELECTRONSLASER-MATTER INTERACTIONSX-RAYShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We report a significant enhancement in both the energy and the flux of relativistic electrons accelerated by ultra-intense laser pulse irradiation (>1 10 21 W cm-2) of near solid density aligned CD2 nanowire arrays in comparison to those from solid CD2 foils irradiated with the same laser pulses. Ultrahigh contrast femtosecond laser pulses penetrate deep into the nanowire array creating a large interaction volume. Detailed three dimensional relativistic particle-in-cell simulations show that electrons originating anywhere along the nanowire length are first driven towards the laser to reach a lower density plasma region near the tip of the nanowires, where they are accelerated to the highest energies. Electrons that reach the lower density plasma experience direct laser acceleration up to the dephasing length, where they outrun the laser pulse. This yields an electron beam characterized by a 3 higher electron temperature and an integrated flux 22.4 larger respect to foil targets. Additionally, the generation of >1 MeV photons were observed to increase up to 4.5.Fil: Moreau, A.. State University of Colorado - Fort Collins; Estados UnidosFil: Hollinger, R.. State University of Colorado - Fort Collins; Estados UnidosFil: Calvi, C.. State University of Colorado - Fort Collins; Estados UnidosFil: Wang, S.. State University of Colorado - Fort Collins; Estados UnidosFil: Wang, Y.. State University of Colorado - Fort Collins; Estados UnidosFil: Capeluto, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Rockwood, A.. State University of Colorado - Fort Collins; Estados UnidosFil: Curtis, A.. State University of Colorado - Fort Collins; Estados UnidosFil: Kasdorf, S.. State University of Colorado - Fort Collins; Estados UnidosFil: Shlyaptsev, V.N.. State University of Colorado - Fort Collins; Estados UnidosFil: Kaymak, V.. Universitat Dusseldorf; AlemaniaFil: Pukhov, A.. Universitat Dusseldorf; AlemaniaFil: Rocca, J.J.. State University of Colorado - Fort Collins; Estados UnidosIOP Publishing2020-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/145814Moreau, A.; Hollinger, R.; Calvi, C.; Wang, S.; Wang, Y.; et al.; Enhanced electron acceleration in aligned nanowire arrays irradiated at highly relativistic intensities; IOP Publishing; Plasma Physics And Controlled Fusion; 62; 1; 1-2020; 1-100741-3335CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1361-6587/ab4d0cinfo:eu-repo/semantics/altIdentifier/doi/10.1088/1361-6587/ab4d0cinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:37:25Zoai:ri.conicet.gov.ar:11336/145814instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:37:25.877CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Enhanced electron acceleration in aligned nanowire arrays irradiated at highly relativistic intensities
title Enhanced electron acceleration in aligned nanowire arrays irradiated at highly relativistic intensities
spellingShingle Enhanced electron acceleration in aligned nanowire arrays irradiated at highly relativistic intensities
Moreau, A.
ELECTRON ACCELERATION
HIGH ENERGY DENSITY PLASMAS
HOT ELECTRONS
LASER-MATTER INTERACTIONS
X-RAYS
title_short Enhanced electron acceleration in aligned nanowire arrays irradiated at highly relativistic intensities
title_full Enhanced electron acceleration in aligned nanowire arrays irradiated at highly relativistic intensities
title_fullStr Enhanced electron acceleration in aligned nanowire arrays irradiated at highly relativistic intensities
title_full_unstemmed Enhanced electron acceleration in aligned nanowire arrays irradiated at highly relativistic intensities
title_sort Enhanced electron acceleration in aligned nanowire arrays irradiated at highly relativistic intensities
dc.creator.none.fl_str_mv Moreau, A.
Hollinger, R.
Calvi, C.
Wang, S.
Wang, Y.
Capeluto, Maria Gabriela
Rockwood, A.
Curtis, A.
Kasdorf, S.
Shlyaptsev, V.N.
Kaymak, V.
Pukhov, A.
Rocca, J.J.
author Moreau, A.
author_facet Moreau, A.
Hollinger, R.
Calvi, C.
Wang, S.
Wang, Y.
Capeluto, Maria Gabriela
Rockwood, A.
Curtis, A.
Kasdorf, S.
Shlyaptsev, V.N.
Kaymak, V.
Pukhov, A.
Rocca, J.J.
author_role author
author2 Hollinger, R.
Calvi, C.
Wang, S.
Wang, Y.
Capeluto, Maria Gabriela
Rockwood, A.
Curtis, A.
Kasdorf, S.
Shlyaptsev, V.N.
Kaymak, V.
Pukhov, A.
Rocca, J.J.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv ELECTRON ACCELERATION
HIGH ENERGY DENSITY PLASMAS
HOT ELECTRONS
LASER-MATTER INTERACTIONS
X-RAYS
topic ELECTRON ACCELERATION
HIGH ENERGY DENSITY PLASMAS
HOT ELECTRONS
LASER-MATTER INTERACTIONS
X-RAYS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We report a significant enhancement in both the energy and the flux of relativistic electrons accelerated by ultra-intense laser pulse irradiation (>1 10 21 W cm-2) of near solid density aligned CD2 nanowire arrays in comparison to those from solid CD2 foils irradiated with the same laser pulses. Ultrahigh contrast femtosecond laser pulses penetrate deep into the nanowire array creating a large interaction volume. Detailed three dimensional relativistic particle-in-cell simulations show that electrons originating anywhere along the nanowire length are first driven towards the laser to reach a lower density plasma region near the tip of the nanowires, where they are accelerated to the highest energies. Electrons that reach the lower density plasma experience direct laser acceleration up to the dephasing length, where they outrun the laser pulse. This yields an electron beam characterized by a 3 higher electron temperature and an integrated flux 22.4 larger respect to foil targets. Additionally, the generation of >1 MeV photons were observed to increase up to 4.5.
Fil: Moreau, A.. State University of Colorado - Fort Collins; Estados Unidos
Fil: Hollinger, R.. State University of Colorado - Fort Collins; Estados Unidos
Fil: Calvi, C.. State University of Colorado - Fort Collins; Estados Unidos
Fil: Wang, S.. State University of Colorado - Fort Collins; Estados Unidos
Fil: Wang, Y.. State University of Colorado - Fort Collins; Estados Unidos
Fil: Capeluto, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Rockwood, A.. State University of Colorado - Fort Collins; Estados Unidos
Fil: Curtis, A.. State University of Colorado - Fort Collins; Estados Unidos
Fil: Kasdorf, S.. State University of Colorado - Fort Collins; Estados Unidos
Fil: Shlyaptsev, V.N.. State University of Colorado - Fort Collins; Estados Unidos
Fil: Kaymak, V.. Universitat Dusseldorf; Alemania
Fil: Pukhov, A.. Universitat Dusseldorf; Alemania
Fil: Rocca, J.J.. State University of Colorado - Fort Collins; Estados Unidos
description We report a significant enhancement in both the energy and the flux of relativistic electrons accelerated by ultra-intense laser pulse irradiation (>1 10 21 W cm-2) of near solid density aligned CD2 nanowire arrays in comparison to those from solid CD2 foils irradiated with the same laser pulses. Ultrahigh contrast femtosecond laser pulses penetrate deep into the nanowire array creating a large interaction volume. Detailed three dimensional relativistic particle-in-cell simulations show that electrons originating anywhere along the nanowire length are first driven towards the laser to reach a lower density plasma region near the tip of the nanowires, where they are accelerated to the highest energies. Electrons that reach the lower density plasma experience direct laser acceleration up to the dephasing length, where they outrun the laser pulse. This yields an electron beam characterized by a 3 higher electron temperature and an integrated flux 22.4 larger respect to foil targets. Additionally, the generation of >1 MeV photons were observed to increase up to 4.5.
publishDate 2020
dc.date.none.fl_str_mv 2020-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/145814
Moreau, A.; Hollinger, R.; Calvi, C.; Wang, S.; Wang, Y.; et al.; Enhanced electron acceleration in aligned nanowire arrays irradiated at highly relativistic intensities; IOP Publishing; Plasma Physics And Controlled Fusion; 62; 1; 1-2020; 1-10
0741-3335
CONICET Digital
CONICET
url http://hdl.handle.net/11336/145814
identifier_str_mv Moreau, A.; Hollinger, R.; Calvi, C.; Wang, S.; Wang, Y.; et al.; Enhanced electron acceleration in aligned nanowire arrays irradiated at highly relativistic intensities; IOP Publishing; Plasma Physics And Controlled Fusion; 62; 1; 1-2020; 1-10
0741-3335
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1361-6587/ab4d0c
info:eu-repo/semantics/altIdentifier/doi/10.1088/1361-6587/ab4d0c
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1848597312565149696
score 12.976206