Ion acceleration from microstructured targets irradiated by high-intensity picosecond laser pulses
- Autores
- Bailly Grandvaux, M.; Kawahito, D.; McGuffey, C.; Strehlow, J.; Edghill, B.; Wei, M.S.; Alexander, N.; Haid, A.; Brabetz, C.; Bagnoud, V.; Hollinger, R.; Capeluto, Maria Gabriela; Rocca, J.J.; Beg, F.N.
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Structures on the front surface of thin foil targets for laser-driven ion acceleration have been proposed to increase the ion source maximum energy and conversion efficiency. While structures have been shown to significantly boost the proton acceleration from pulses of moderate-energy fluence, their performance on tightly focused and high-energy lasers remains unclear. Here, we report the results of laser-driven three-dimensional (3D)-printed microtube targets, focusing on their efficacy for ion acceleration. Using the high-contrast (∼1012) PHELIX laser (150J, 1021W/cm2), we studied the acceleration of ions from 1-μm-thick foils covered with micropillars or microtubes, which we compared with flat foils. The front-surface structures significantly increased the conversion efficiency from laser to light ions, with up to a factor of 5 higher proton number with respect to a flat target, albeit without an increase of the cutoff energy. An optimum diameter was found for the microtube targets. Our findings are supported by a systematic particle-in-cell modeling investigation of ion acceleration using 2D simulations with various structure dimensions. Simulations reproduce the experimental data with good agreement, including the observation of the optimum tube diameter, and reveal that the laser is shuttered by the plasma filling the tubes, explaining why the ion cutoff energy was not increased in this regime.
Fil: Bailly Grandvaux, M.. University of California at San Diego; Estados Unidos
Fil: Kawahito, D.. University of California at San Diego; Estados Unidos
Fil: McGuffey, C.. University of California at San Diego; Estados Unidos
Fil: Strehlow, J.. University of California at San Diego; Estados Unidos
Fil: Edghill, B.. University of California at San Diego; Estados Unidos
Fil: Wei, M.S.. Laboratory For Laser Energetics; Estados Unidos
Fil: Alexander, N.. General Atomics; Estados Unidos
Fil: Haid, A.. General Atomics; Estados Unidos
Fil: Brabetz, C.. Helmholtzzentrum Für Schwerionenforschung; Alemania
Fil: Bagnoud, V.. Helmholtzzentrum Für Schwerionenforschung; Alemania
Fil: Hollinger, R.. State University of Colorado - Fort Collins; Estados Unidos
Fil: Capeluto, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Rocca, J.J.. State University of Colorado - Fort Collins; Estados Unidos
Fil: Beg, F.N.. University of California at San Diego; Estados Unidos - Materia
-
ION ACCELERATION
PLASMA
UHED - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/146154
Ver los metadatos del registro completo
id |
CONICETDig_4e56ff2105a0243982eb7c5282259c3b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/146154 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Ion acceleration from microstructured targets irradiated by high-intensity picosecond laser pulsesBailly Grandvaux, M.Kawahito, D.McGuffey, C.Strehlow, J.Edghill, B.Wei, M.S.Alexander, N.Haid, A.Brabetz, C.Bagnoud, V.Hollinger, R.Capeluto, Maria GabrielaRocca, J.J.Beg, F.N.ION ACCELERATIONPLASMAUHEDhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Structures on the front surface of thin foil targets for laser-driven ion acceleration have been proposed to increase the ion source maximum energy and conversion efficiency. While structures have been shown to significantly boost the proton acceleration from pulses of moderate-energy fluence, their performance on tightly focused and high-energy lasers remains unclear. Here, we report the results of laser-driven three-dimensional (3D)-printed microtube targets, focusing on their efficacy for ion acceleration. Using the high-contrast (∼1012) PHELIX laser (150J, 1021W/cm2), we studied the acceleration of ions from 1-μm-thick foils covered with micropillars or microtubes, which we compared with flat foils. The front-surface structures significantly increased the conversion efficiency from laser to light ions, with up to a factor of 5 higher proton number with respect to a flat target, albeit without an increase of the cutoff energy. An optimum diameter was found for the microtube targets. Our findings are supported by a systematic particle-in-cell modeling investigation of ion acceleration using 2D simulations with various structure dimensions. Simulations reproduce the experimental data with good agreement, including the observation of the optimum tube diameter, and reveal that the laser is shuttered by the plasma filling the tubes, explaining why the ion cutoff energy was not increased in this regime.Fil: Bailly Grandvaux, M.. University of California at San Diego; Estados UnidosFil: Kawahito, D.. University of California at San Diego; Estados UnidosFil: McGuffey, C.. University of California at San Diego; Estados UnidosFil: Strehlow, J.. University of California at San Diego; Estados UnidosFil: Edghill, B.. University of California at San Diego; Estados UnidosFil: Wei, M.S.. Laboratory For Laser Energetics; Estados UnidosFil: Alexander, N.. General Atomics; Estados UnidosFil: Haid, A.. General Atomics; Estados UnidosFil: Brabetz, C.. Helmholtzzentrum Für Schwerionenforschung; AlemaniaFil: Bagnoud, V.. Helmholtzzentrum Für Schwerionenforschung; AlemaniaFil: Hollinger, R.. State University of Colorado - Fort Collins; Estados UnidosFil: Capeluto, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Rocca, J.J.. State University of Colorado - Fort Collins; Estados UnidosFil: Beg, F.N.. University of California at San Diego; Estados UnidosAmerican Physical Society2020-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/146154Bailly Grandvaux, M.; Kawahito, D.; McGuffey, C.; Strehlow, J.; Edghill, B.; et al.; Ion acceleration from microstructured targets irradiated by high-intensity picosecond laser pulses; American Physical Society; Physical Review E; 102; 2; 8-2020; 1-72470-0053CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.102.021201info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.102.021201info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:58:07Zoai:ri.conicet.gov.ar:11336/146154instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:58:08.296CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Ion acceleration from microstructured targets irradiated by high-intensity picosecond laser pulses |
title |
Ion acceleration from microstructured targets irradiated by high-intensity picosecond laser pulses |
spellingShingle |
Ion acceleration from microstructured targets irradiated by high-intensity picosecond laser pulses Bailly Grandvaux, M. ION ACCELERATION PLASMA UHED |
title_short |
Ion acceleration from microstructured targets irradiated by high-intensity picosecond laser pulses |
title_full |
Ion acceleration from microstructured targets irradiated by high-intensity picosecond laser pulses |
title_fullStr |
Ion acceleration from microstructured targets irradiated by high-intensity picosecond laser pulses |
title_full_unstemmed |
Ion acceleration from microstructured targets irradiated by high-intensity picosecond laser pulses |
title_sort |
Ion acceleration from microstructured targets irradiated by high-intensity picosecond laser pulses |
dc.creator.none.fl_str_mv |
Bailly Grandvaux, M. Kawahito, D. McGuffey, C. Strehlow, J. Edghill, B. Wei, M.S. Alexander, N. Haid, A. Brabetz, C. Bagnoud, V. Hollinger, R. Capeluto, Maria Gabriela Rocca, J.J. Beg, F.N. |
author |
Bailly Grandvaux, M. |
author_facet |
Bailly Grandvaux, M. Kawahito, D. McGuffey, C. Strehlow, J. Edghill, B. Wei, M.S. Alexander, N. Haid, A. Brabetz, C. Bagnoud, V. Hollinger, R. Capeluto, Maria Gabriela Rocca, J.J. Beg, F.N. |
author_role |
author |
author2 |
Kawahito, D. McGuffey, C. Strehlow, J. Edghill, B. Wei, M.S. Alexander, N. Haid, A. Brabetz, C. Bagnoud, V. Hollinger, R. Capeluto, Maria Gabriela Rocca, J.J. Beg, F.N. |
author2_role |
author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
ION ACCELERATION PLASMA UHED |
topic |
ION ACCELERATION PLASMA UHED |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Structures on the front surface of thin foil targets for laser-driven ion acceleration have been proposed to increase the ion source maximum energy and conversion efficiency. While structures have been shown to significantly boost the proton acceleration from pulses of moderate-energy fluence, their performance on tightly focused and high-energy lasers remains unclear. Here, we report the results of laser-driven three-dimensional (3D)-printed microtube targets, focusing on their efficacy for ion acceleration. Using the high-contrast (∼1012) PHELIX laser (150J, 1021W/cm2), we studied the acceleration of ions from 1-μm-thick foils covered with micropillars or microtubes, which we compared with flat foils. The front-surface structures significantly increased the conversion efficiency from laser to light ions, with up to a factor of 5 higher proton number with respect to a flat target, albeit without an increase of the cutoff energy. An optimum diameter was found for the microtube targets. Our findings are supported by a systematic particle-in-cell modeling investigation of ion acceleration using 2D simulations with various structure dimensions. Simulations reproduce the experimental data with good agreement, including the observation of the optimum tube diameter, and reveal that the laser is shuttered by the plasma filling the tubes, explaining why the ion cutoff energy was not increased in this regime. Fil: Bailly Grandvaux, M.. University of California at San Diego; Estados Unidos Fil: Kawahito, D.. University of California at San Diego; Estados Unidos Fil: McGuffey, C.. University of California at San Diego; Estados Unidos Fil: Strehlow, J.. University of California at San Diego; Estados Unidos Fil: Edghill, B.. University of California at San Diego; Estados Unidos Fil: Wei, M.S.. Laboratory For Laser Energetics; Estados Unidos Fil: Alexander, N.. General Atomics; Estados Unidos Fil: Haid, A.. General Atomics; Estados Unidos Fil: Brabetz, C.. Helmholtzzentrum Für Schwerionenforschung; Alemania Fil: Bagnoud, V.. Helmholtzzentrum Für Schwerionenforschung; Alemania Fil: Hollinger, R.. State University of Colorado - Fort Collins; Estados Unidos Fil: Capeluto, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Rocca, J.J.. State University of Colorado - Fort Collins; Estados Unidos Fil: Beg, F.N.. University of California at San Diego; Estados Unidos |
description |
Structures on the front surface of thin foil targets for laser-driven ion acceleration have been proposed to increase the ion source maximum energy and conversion efficiency. While structures have been shown to significantly boost the proton acceleration from pulses of moderate-energy fluence, their performance on tightly focused and high-energy lasers remains unclear. Here, we report the results of laser-driven three-dimensional (3D)-printed microtube targets, focusing on their efficacy for ion acceleration. Using the high-contrast (∼1012) PHELIX laser (150J, 1021W/cm2), we studied the acceleration of ions from 1-μm-thick foils covered with micropillars or microtubes, which we compared with flat foils. The front-surface structures significantly increased the conversion efficiency from laser to light ions, with up to a factor of 5 higher proton number with respect to a flat target, albeit without an increase of the cutoff energy. An optimum diameter was found for the microtube targets. Our findings are supported by a systematic particle-in-cell modeling investigation of ion acceleration using 2D simulations with various structure dimensions. Simulations reproduce the experimental data with good agreement, including the observation of the optimum tube diameter, and reveal that the laser is shuttered by the plasma filling the tubes, explaining why the ion cutoff energy was not increased in this regime. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/146154 Bailly Grandvaux, M.; Kawahito, D.; McGuffey, C.; Strehlow, J.; Edghill, B.; et al.; Ion acceleration from microstructured targets irradiated by high-intensity picosecond laser pulses; American Physical Society; Physical Review E; 102; 2; 8-2020; 1-7 2470-0053 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/146154 |
identifier_str_mv |
Bailly Grandvaux, M.; Kawahito, D.; McGuffey, C.; Strehlow, J.; Edghill, B.; et al.; Ion acceleration from microstructured targets irradiated by high-intensity picosecond laser pulses; American Physical Society; Physical Review E; 102; 2; 8-2020; 1-7 2470-0053 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.102.021201 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.102.021201 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083121014898688 |
score |
13.22299 |