Ion acceleration from microstructured targets irradiated by high-intensity picosecond laser pulses

Autores
Bailly Grandvaux, M.; Kawahito, D.; McGuffey, C.; Strehlow, J.; Edghill, B.; Wei, M.S.; Alexander, N.; Haid, A.; Brabetz, C.; Bagnoud, V.; Hollinger, R.; Capeluto, Maria Gabriela; Rocca, J.J.; Beg, F.N.
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Structures on the front surface of thin foil targets for laser-driven ion acceleration have been proposed to increase the ion source maximum energy and conversion efficiency. While structures have been shown to significantly boost the proton acceleration from pulses of moderate-energy fluence, their performance on tightly focused and high-energy lasers remains unclear. Here, we report the results of laser-driven three-dimensional (3D)-printed microtube targets, focusing on their efficacy for ion acceleration. Using the high-contrast (∼1012) PHELIX laser (150J, 1021W/cm2), we studied the acceleration of ions from 1-μm-thick foils covered with micropillars or microtubes, which we compared with flat foils. The front-surface structures significantly increased the conversion efficiency from laser to light ions, with up to a factor of 5 higher proton number with respect to a flat target, albeit without an increase of the cutoff energy. An optimum diameter was found for the microtube targets. Our findings are supported by a systematic particle-in-cell modeling investigation of ion acceleration using 2D simulations with various structure dimensions. Simulations reproduce the experimental data with good agreement, including the observation of the optimum tube diameter, and reveal that the laser is shuttered by the plasma filling the tubes, explaining why the ion cutoff energy was not increased in this regime.
Fil: Bailly Grandvaux, M.. University of California at San Diego; Estados Unidos
Fil: Kawahito, D.. University of California at San Diego; Estados Unidos
Fil: McGuffey, C.. University of California at San Diego; Estados Unidos
Fil: Strehlow, J.. University of California at San Diego; Estados Unidos
Fil: Edghill, B.. University of California at San Diego; Estados Unidos
Fil: Wei, M.S.. Laboratory For Laser Energetics; Estados Unidos
Fil: Alexander, N.. General Atomics; Estados Unidos
Fil: Haid, A.. General Atomics; Estados Unidos
Fil: Brabetz, C.. Helmholtzzentrum Für Schwerionenforschung; Alemania
Fil: Bagnoud, V.. Helmholtzzentrum Für Schwerionenforschung; Alemania
Fil: Hollinger, R.. State University of Colorado - Fort Collins; Estados Unidos
Fil: Capeluto, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Rocca, J.J.. State University of Colorado - Fort Collins; Estados Unidos
Fil: Beg, F.N.. University of California at San Diego; Estados Unidos
Materia
ION ACCELERATION
PLASMA
UHED
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/146154

id CONICETDig_4e56ff2105a0243982eb7c5282259c3b
oai_identifier_str oai:ri.conicet.gov.ar:11336/146154
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Ion acceleration from microstructured targets irradiated by high-intensity picosecond laser pulsesBailly Grandvaux, M.Kawahito, D.McGuffey, C.Strehlow, J.Edghill, B.Wei, M.S.Alexander, N.Haid, A.Brabetz, C.Bagnoud, V.Hollinger, R.Capeluto, Maria GabrielaRocca, J.J.Beg, F.N.ION ACCELERATIONPLASMAUHEDhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Structures on the front surface of thin foil targets for laser-driven ion acceleration have been proposed to increase the ion source maximum energy and conversion efficiency. While structures have been shown to significantly boost the proton acceleration from pulses of moderate-energy fluence, their performance on tightly focused and high-energy lasers remains unclear. Here, we report the results of laser-driven three-dimensional (3D)-printed microtube targets, focusing on their efficacy for ion acceleration. Using the high-contrast (∼1012) PHELIX laser (150J, 1021W/cm2), we studied the acceleration of ions from 1-μm-thick foils covered with micropillars or microtubes, which we compared with flat foils. The front-surface structures significantly increased the conversion efficiency from laser to light ions, with up to a factor of 5 higher proton number with respect to a flat target, albeit without an increase of the cutoff energy. An optimum diameter was found for the microtube targets. Our findings are supported by a systematic particle-in-cell modeling investigation of ion acceleration using 2D simulations with various structure dimensions. Simulations reproduce the experimental data with good agreement, including the observation of the optimum tube diameter, and reveal that the laser is shuttered by the plasma filling the tubes, explaining why the ion cutoff energy was not increased in this regime.Fil: Bailly Grandvaux, M.. University of California at San Diego; Estados UnidosFil: Kawahito, D.. University of California at San Diego; Estados UnidosFil: McGuffey, C.. University of California at San Diego; Estados UnidosFil: Strehlow, J.. University of California at San Diego; Estados UnidosFil: Edghill, B.. University of California at San Diego; Estados UnidosFil: Wei, M.S.. Laboratory For Laser Energetics; Estados UnidosFil: Alexander, N.. General Atomics; Estados UnidosFil: Haid, A.. General Atomics; Estados UnidosFil: Brabetz, C.. Helmholtzzentrum Für Schwerionenforschung; AlemaniaFil: Bagnoud, V.. Helmholtzzentrum Für Schwerionenforschung; AlemaniaFil: Hollinger, R.. State University of Colorado - Fort Collins; Estados UnidosFil: Capeluto, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Rocca, J.J.. State University of Colorado - Fort Collins; Estados UnidosFil: Beg, F.N.. University of California at San Diego; Estados UnidosAmerican Physical Society2020-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/146154Bailly Grandvaux, M.; Kawahito, D.; McGuffey, C.; Strehlow, J.; Edghill, B.; et al.; Ion acceleration from microstructured targets irradiated by high-intensity picosecond laser pulses; American Physical Society; Physical Review E; 102; 2; 8-2020; 1-72470-0053CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.102.021201info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.102.021201info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:58:07Zoai:ri.conicet.gov.ar:11336/146154instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:58:08.296CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Ion acceleration from microstructured targets irradiated by high-intensity picosecond laser pulses
title Ion acceleration from microstructured targets irradiated by high-intensity picosecond laser pulses
spellingShingle Ion acceleration from microstructured targets irradiated by high-intensity picosecond laser pulses
Bailly Grandvaux, M.
ION ACCELERATION
PLASMA
UHED
title_short Ion acceleration from microstructured targets irradiated by high-intensity picosecond laser pulses
title_full Ion acceleration from microstructured targets irradiated by high-intensity picosecond laser pulses
title_fullStr Ion acceleration from microstructured targets irradiated by high-intensity picosecond laser pulses
title_full_unstemmed Ion acceleration from microstructured targets irradiated by high-intensity picosecond laser pulses
title_sort Ion acceleration from microstructured targets irradiated by high-intensity picosecond laser pulses
dc.creator.none.fl_str_mv Bailly Grandvaux, M.
Kawahito, D.
McGuffey, C.
Strehlow, J.
Edghill, B.
Wei, M.S.
Alexander, N.
Haid, A.
Brabetz, C.
Bagnoud, V.
Hollinger, R.
Capeluto, Maria Gabriela
Rocca, J.J.
Beg, F.N.
author Bailly Grandvaux, M.
author_facet Bailly Grandvaux, M.
Kawahito, D.
McGuffey, C.
Strehlow, J.
Edghill, B.
Wei, M.S.
Alexander, N.
Haid, A.
Brabetz, C.
Bagnoud, V.
Hollinger, R.
Capeluto, Maria Gabriela
Rocca, J.J.
Beg, F.N.
author_role author
author2 Kawahito, D.
McGuffey, C.
Strehlow, J.
Edghill, B.
Wei, M.S.
Alexander, N.
Haid, A.
Brabetz, C.
Bagnoud, V.
Hollinger, R.
Capeluto, Maria Gabriela
Rocca, J.J.
Beg, F.N.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv ION ACCELERATION
PLASMA
UHED
topic ION ACCELERATION
PLASMA
UHED
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Structures on the front surface of thin foil targets for laser-driven ion acceleration have been proposed to increase the ion source maximum energy and conversion efficiency. While structures have been shown to significantly boost the proton acceleration from pulses of moderate-energy fluence, their performance on tightly focused and high-energy lasers remains unclear. Here, we report the results of laser-driven three-dimensional (3D)-printed microtube targets, focusing on their efficacy for ion acceleration. Using the high-contrast (∼1012) PHELIX laser (150J, 1021W/cm2), we studied the acceleration of ions from 1-μm-thick foils covered with micropillars or microtubes, which we compared with flat foils. The front-surface structures significantly increased the conversion efficiency from laser to light ions, with up to a factor of 5 higher proton number with respect to a flat target, albeit without an increase of the cutoff energy. An optimum diameter was found for the microtube targets. Our findings are supported by a systematic particle-in-cell modeling investigation of ion acceleration using 2D simulations with various structure dimensions. Simulations reproduce the experimental data with good agreement, including the observation of the optimum tube diameter, and reveal that the laser is shuttered by the plasma filling the tubes, explaining why the ion cutoff energy was not increased in this regime.
Fil: Bailly Grandvaux, M.. University of California at San Diego; Estados Unidos
Fil: Kawahito, D.. University of California at San Diego; Estados Unidos
Fil: McGuffey, C.. University of California at San Diego; Estados Unidos
Fil: Strehlow, J.. University of California at San Diego; Estados Unidos
Fil: Edghill, B.. University of California at San Diego; Estados Unidos
Fil: Wei, M.S.. Laboratory For Laser Energetics; Estados Unidos
Fil: Alexander, N.. General Atomics; Estados Unidos
Fil: Haid, A.. General Atomics; Estados Unidos
Fil: Brabetz, C.. Helmholtzzentrum Für Schwerionenforschung; Alemania
Fil: Bagnoud, V.. Helmholtzzentrum Für Schwerionenforschung; Alemania
Fil: Hollinger, R.. State University of Colorado - Fort Collins; Estados Unidos
Fil: Capeluto, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Rocca, J.J.. State University of Colorado - Fort Collins; Estados Unidos
Fil: Beg, F.N.. University of California at San Diego; Estados Unidos
description Structures on the front surface of thin foil targets for laser-driven ion acceleration have been proposed to increase the ion source maximum energy and conversion efficiency. While structures have been shown to significantly boost the proton acceleration from pulses of moderate-energy fluence, their performance on tightly focused and high-energy lasers remains unclear. Here, we report the results of laser-driven three-dimensional (3D)-printed microtube targets, focusing on their efficacy for ion acceleration. Using the high-contrast (∼1012) PHELIX laser (150J, 1021W/cm2), we studied the acceleration of ions from 1-μm-thick foils covered with micropillars or microtubes, which we compared with flat foils. The front-surface structures significantly increased the conversion efficiency from laser to light ions, with up to a factor of 5 higher proton number with respect to a flat target, albeit without an increase of the cutoff energy. An optimum diameter was found for the microtube targets. Our findings are supported by a systematic particle-in-cell modeling investigation of ion acceleration using 2D simulations with various structure dimensions. Simulations reproduce the experimental data with good agreement, including the observation of the optimum tube diameter, and reveal that the laser is shuttered by the plasma filling the tubes, explaining why the ion cutoff energy was not increased in this regime.
publishDate 2020
dc.date.none.fl_str_mv 2020-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/146154
Bailly Grandvaux, M.; Kawahito, D.; McGuffey, C.; Strehlow, J.; Edghill, B.; et al.; Ion acceleration from microstructured targets irradiated by high-intensity picosecond laser pulses; American Physical Society; Physical Review E; 102; 2; 8-2020; 1-7
2470-0053
CONICET Digital
CONICET
url http://hdl.handle.net/11336/146154
identifier_str_mv Bailly Grandvaux, M.; Kawahito, D.; McGuffey, C.; Strehlow, J.; Edghill, B.; et al.; Ion acceleration from microstructured targets irradiated by high-intensity picosecond laser pulses; American Physical Society; Physical Review E; 102; 2; 8-2020; 1-7
2470-0053
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.102.021201
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.102.021201
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083121014898688
score 13.22299