Hybrid Polymer−Silicon Proton Conducting Membranes via a Pore-Filling Surface-Initiated Polymerization Approach

Autores
Yameen, Basit; Kaltbeitzel, Anke; Glasser, Gunnar; Langner, Andreas; Müller, Frank; Gösele, Ulrich; Knoll, Wolfgang; Azzaroni, Omar
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
An alternative approach for the creation of proton conducting platforms is presented. The methodology is based on the so-called “pore-filling concept”, which relies on the filling of porous matrices with polyelectrolytes to obtain proton conducting platforms with high dimensional stability. Polymer-silicon composite membranes, with well-defined polyelectrolyte microdomains oriented normal to the plane of the membrane, were prepared using photoelectrochemically etched silicon as a microstructured scaffold. Ordered two-dimensional macroporous silicon structures were rendered proton conducting by filling the micropores via a surfaceinitiated atom transfer radical polymerization process. The morphological aspects, chemical stability, and performance of the hybrid assemblies were characterized by a set of techniques including scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, nuclear magnetic resonance and impedance spectroscopy, among others. The fabricated siliconpoly(sodium 2-acrylamide-2-methylpropane sulfonate) hybrid membranes displayed proton conductivities in the range of 1 × 10-2 S/cm. This work illustrates the potential of hybrid polymer-silicon composite membranes synthesized by pore-filling surface-initiated polymerization to create proton conducting platforms in a simple and straightforward manner. Versatility and relative ease of preparation are two key aspects that make this approach an attractive alternative for the molecular design and preparation of proton conducting systems.
Fil: Yameen, Basit. Max-Planck-Institut fur Polymerforschung; Alemania
Fil: Kaltbeitzel, Anke. Max-Planck-Institut fur Polymerforschung; Alemania
Fil: Glasser, Gunnar. Max-Planck-Institut fur Polymerforschung; Alemania
Fil: Langner, Andreas. Max-Planck-Institut fur Mikrostrukturphysik; Alemania
Fil: Müller, Frank. Max-Planck-Institut fur Mikrostrukturphysik; Alemania
Fil: Gösele, Ulrich. Max-Planck-Institut fur Mikrostrukturphysik; Alemania
Fil: Knoll, Wolfgang. Austrian Institute of Technology; Austria
Fil: Azzaroni, Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Materia
Soft Nanotechnology
Polymers
Fuel Cells
Proton Exchange Membranes
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/275335

id CONICETDig_78416efa75b6a988fd63dd881bcaab6f
oai_identifier_str oai:ri.conicet.gov.ar:11336/275335
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Hybrid Polymer−Silicon Proton Conducting Membranes via a Pore-Filling Surface-Initiated Polymerization ApproachYameen, BasitKaltbeitzel, AnkeGlasser, GunnarLangner, AndreasMüller, FrankGösele, UlrichKnoll, WolfgangAzzaroni, OmarSoft NanotechnologyPolymersFuel CellsProton Exchange Membraneshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1An alternative approach for the creation of proton conducting platforms is presented. The methodology is based on the so-called “pore-filling concept”, which relies on the filling of porous matrices with polyelectrolytes to obtain proton conducting platforms with high dimensional stability. Polymer-silicon composite membranes, with well-defined polyelectrolyte microdomains oriented normal to the plane of the membrane, were prepared using photoelectrochemically etched silicon as a microstructured scaffold. Ordered two-dimensional macroporous silicon structures were rendered proton conducting by filling the micropores via a surfaceinitiated atom transfer radical polymerization process. The morphological aspects, chemical stability, and performance of the hybrid assemblies were characterized by a set of techniques including scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, nuclear magnetic resonance and impedance spectroscopy, among others. The fabricated siliconpoly(sodium 2-acrylamide-2-methylpropane sulfonate) hybrid membranes displayed proton conductivities in the range of 1 × 10-2 S/cm. This work illustrates the potential of hybrid polymer-silicon composite membranes synthesized by pore-filling surface-initiated polymerization to create proton conducting platforms in a simple and straightforward manner. Versatility and relative ease of preparation are two key aspects that make this approach an attractive alternative for the molecular design and preparation of proton conducting systems.Fil: Yameen, Basit. Max-Planck-Institut fur Polymerforschung; AlemaniaFil: Kaltbeitzel, Anke. Max-Planck-Institut fur Polymerforschung; AlemaniaFil: Glasser, Gunnar. Max-Planck-Institut fur Polymerforschung; AlemaniaFil: Langner, Andreas. Max-Planck-Institut fur Mikrostrukturphysik; AlemaniaFil: Müller, Frank. Max-Planck-Institut fur Mikrostrukturphysik; AlemaniaFil: Gösele, Ulrich. Max-Planck-Institut fur Mikrostrukturphysik; AlemaniaFil: Knoll, Wolfgang. Austrian Institute of Technology; AustriaFil: Azzaroni, Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaAmerican Chemical Society2009-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/275335Yameen, Basit; Kaltbeitzel, Anke; Glasser, Gunnar; Langner, Andreas; Müller, Frank; et al.; Hybrid Polymer−Silicon Proton Conducting Membranes via a Pore-Filling Surface-Initiated Polymerization Approach; American Chemical Society; ACS Applied Materials & Interfaces; 2; 1; 12-2009; 279-2871944-8244CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/am900690xinfo:eu-repo/semantics/altIdentifier/doi/10.1021/am900690xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T14:04:49Zoai:ri.conicet.gov.ar:11336/275335instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 14:04:49.516CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Hybrid Polymer−Silicon Proton Conducting Membranes via a Pore-Filling Surface-Initiated Polymerization Approach
title Hybrid Polymer−Silicon Proton Conducting Membranes via a Pore-Filling Surface-Initiated Polymerization Approach
spellingShingle Hybrid Polymer−Silicon Proton Conducting Membranes via a Pore-Filling Surface-Initiated Polymerization Approach
Yameen, Basit
Soft Nanotechnology
Polymers
Fuel Cells
Proton Exchange Membranes
title_short Hybrid Polymer−Silicon Proton Conducting Membranes via a Pore-Filling Surface-Initiated Polymerization Approach
title_full Hybrid Polymer−Silicon Proton Conducting Membranes via a Pore-Filling Surface-Initiated Polymerization Approach
title_fullStr Hybrid Polymer−Silicon Proton Conducting Membranes via a Pore-Filling Surface-Initiated Polymerization Approach
title_full_unstemmed Hybrid Polymer−Silicon Proton Conducting Membranes via a Pore-Filling Surface-Initiated Polymerization Approach
title_sort Hybrid Polymer−Silicon Proton Conducting Membranes via a Pore-Filling Surface-Initiated Polymerization Approach
dc.creator.none.fl_str_mv Yameen, Basit
Kaltbeitzel, Anke
Glasser, Gunnar
Langner, Andreas
Müller, Frank
Gösele, Ulrich
Knoll, Wolfgang
Azzaroni, Omar
author Yameen, Basit
author_facet Yameen, Basit
Kaltbeitzel, Anke
Glasser, Gunnar
Langner, Andreas
Müller, Frank
Gösele, Ulrich
Knoll, Wolfgang
Azzaroni, Omar
author_role author
author2 Kaltbeitzel, Anke
Glasser, Gunnar
Langner, Andreas
Müller, Frank
Gösele, Ulrich
Knoll, Wolfgang
Azzaroni, Omar
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Soft Nanotechnology
Polymers
Fuel Cells
Proton Exchange Membranes
topic Soft Nanotechnology
Polymers
Fuel Cells
Proton Exchange Membranes
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv An alternative approach for the creation of proton conducting platforms is presented. The methodology is based on the so-called “pore-filling concept”, which relies on the filling of porous matrices with polyelectrolytes to obtain proton conducting platforms with high dimensional stability. Polymer-silicon composite membranes, with well-defined polyelectrolyte microdomains oriented normal to the plane of the membrane, were prepared using photoelectrochemically etched silicon as a microstructured scaffold. Ordered two-dimensional macroporous silicon structures were rendered proton conducting by filling the micropores via a surfaceinitiated atom transfer radical polymerization process. The morphological aspects, chemical stability, and performance of the hybrid assemblies were characterized by a set of techniques including scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, nuclear magnetic resonance and impedance spectroscopy, among others. The fabricated siliconpoly(sodium 2-acrylamide-2-methylpropane sulfonate) hybrid membranes displayed proton conductivities in the range of 1 × 10-2 S/cm. This work illustrates the potential of hybrid polymer-silicon composite membranes synthesized by pore-filling surface-initiated polymerization to create proton conducting platforms in a simple and straightforward manner. Versatility and relative ease of preparation are two key aspects that make this approach an attractive alternative for the molecular design and preparation of proton conducting systems.
Fil: Yameen, Basit. Max-Planck-Institut fur Polymerforschung; Alemania
Fil: Kaltbeitzel, Anke. Max-Planck-Institut fur Polymerforschung; Alemania
Fil: Glasser, Gunnar. Max-Planck-Institut fur Polymerforschung; Alemania
Fil: Langner, Andreas. Max-Planck-Institut fur Mikrostrukturphysik; Alemania
Fil: Müller, Frank. Max-Planck-Institut fur Mikrostrukturphysik; Alemania
Fil: Gösele, Ulrich. Max-Planck-Institut fur Mikrostrukturphysik; Alemania
Fil: Knoll, Wolfgang. Austrian Institute of Technology; Austria
Fil: Azzaroni, Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
description An alternative approach for the creation of proton conducting platforms is presented. The methodology is based on the so-called “pore-filling concept”, which relies on the filling of porous matrices with polyelectrolytes to obtain proton conducting platforms with high dimensional stability. Polymer-silicon composite membranes, with well-defined polyelectrolyte microdomains oriented normal to the plane of the membrane, were prepared using photoelectrochemically etched silicon as a microstructured scaffold. Ordered two-dimensional macroporous silicon structures were rendered proton conducting by filling the micropores via a surfaceinitiated atom transfer radical polymerization process. The morphological aspects, chemical stability, and performance of the hybrid assemblies were characterized by a set of techniques including scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, nuclear magnetic resonance and impedance spectroscopy, among others. The fabricated siliconpoly(sodium 2-acrylamide-2-methylpropane sulfonate) hybrid membranes displayed proton conductivities in the range of 1 × 10-2 S/cm. This work illustrates the potential of hybrid polymer-silicon composite membranes synthesized by pore-filling surface-initiated polymerization to create proton conducting platforms in a simple and straightforward manner. Versatility and relative ease of preparation are two key aspects that make this approach an attractive alternative for the molecular design and preparation of proton conducting systems.
publishDate 2009
dc.date.none.fl_str_mv 2009-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/275335
Yameen, Basit; Kaltbeitzel, Anke; Glasser, Gunnar; Langner, Andreas; Müller, Frank; et al.; Hybrid Polymer−Silicon Proton Conducting Membranes via a Pore-Filling Surface-Initiated Polymerization Approach; American Chemical Society; ACS Applied Materials & Interfaces; 2; 1; 12-2009; 279-287
1944-8244
CONICET Digital
CONICET
url http://hdl.handle.net/11336/275335
identifier_str_mv Yameen, Basit; Kaltbeitzel, Anke; Glasser, Gunnar; Langner, Andreas; Müller, Frank; et al.; Hybrid Polymer−Silicon Proton Conducting Membranes via a Pore-Filling Surface-Initiated Polymerization Approach; American Chemical Society; ACS Applied Materials & Interfaces; 2; 1; 12-2009; 279-287
1944-8244
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/am900690x
info:eu-repo/semantics/altIdentifier/doi/10.1021/am900690x
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1852335518050680832
score 12.952241