Nonadiabatic excited-state molecular dynamics: Numerical tests of convergence and parameters

Autores
Nelson, Tammie; Fernández Alberti, Sebastián; Chernyak, Vladimir; Roitberg, Adrián; Tretiak, Sergei
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Nonadiabatic molecular dynamics simulations, involving multiple Born-Oppenheimer potential energy surfaces, often require a large number of independent trajectories in order to achieve the desired convergence of the results, and simulation relies on different parameters that should be tested and compared. In addition to influencing the speed of the simulation, the chosen parameters combined with the frequently reduced number of trajectories can sometimes lead to unanticipated changes in the accuracy of the simulated dynamics. We have previously developed a nonadiabatic excited state molecular dynamics methodology employing Tullys fewest switches surface hopping algorithm. In this study, we seek to investigate the impact of the number of trajectories and the various parameters on the simulation of the photoinduced dynamics of distyrylbenzene (a small oligomer of polyphenylene vinylene) within our developed framework. Various user-defined parameters are analyzed: classical and quantum integration time steps, the value of the friction coefficient for Langevin dynamics, and the initial seed used for stochastic thermostat and hopping algorithms. Common approximations such as reduced number of nonadiabatic coupling terms and the classical path approximation are also investigated. Our analysis shows that, at least for the considered molecular system, a minimum of ∼400 independent trajectories should be calculated in order to achieve statistical averaging necessary for convergence of the calculated relaxation timescales.
Fil: Nelson, Tammie. Los Alamos National Laboratory; Estados Unidos
Fil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Chernyak, Vladimir. Wayne State University (wayne State University); Estados Unidos
Fil: Roitberg, Adrián. University of Florida; Estados Unidos
Fil: Tretiak, Sergei. Los Alamos National High Magnetic Field Laboratory; Estados Unidos
Materia
nonadiabatic molecular dynamics
excited states
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/194503

id CONICETDig_779f8189d03f22751c83b86e269c99e3
oai_identifier_str oai:ri.conicet.gov.ar:11336/194503
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Nonadiabatic excited-state molecular dynamics: Numerical tests of convergence and parametersNelson, TammieFernández Alberti, SebastiánChernyak, VladimirRoitberg, AdriánTretiak, Sergeinonadiabatic molecular dynamicsexcited stateshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Nonadiabatic molecular dynamics simulations, involving multiple Born-Oppenheimer potential energy surfaces, often require a large number of independent trajectories in order to achieve the desired convergence of the results, and simulation relies on different parameters that should be tested and compared. In addition to influencing the speed of the simulation, the chosen parameters combined with the frequently reduced number of trajectories can sometimes lead to unanticipated changes in the accuracy of the simulated dynamics. We have previously developed a nonadiabatic excited state molecular dynamics methodology employing Tullys fewest switches surface hopping algorithm. In this study, we seek to investigate the impact of the number of trajectories and the various parameters on the simulation of the photoinduced dynamics of distyrylbenzene (a small oligomer of polyphenylene vinylene) within our developed framework. Various user-defined parameters are analyzed: classical and quantum integration time steps, the value of the friction coefficient for Langevin dynamics, and the initial seed used for stochastic thermostat and hopping algorithms. Common approximations such as reduced number of nonadiabatic coupling terms and the classical path approximation are also investigated. Our analysis shows that, at least for the considered molecular system, a minimum of ∼400 independent trajectories should be calculated in order to achieve statistical averaging necessary for convergence of the calculated relaxation timescales.Fil: Nelson, Tammie. Los Alamos National Laboratory; Estados UnidosFil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Chernyak, Vladimir. Wayne State University (wayne State University); Estados UnidosFil: Roitberg, Adrián. University of Florida; Estados UnidosFil: Tretiak, Sergei. Los Alamos National High Magnetic Field Laboratory; Estados UnidosAmerican Institute of Physics2012-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/194503Nelson, Tammie; Fernández Alberti, Sebastián; Chernyak, Vladimir; Roitberg, Adrián; Tretiak, Sergei; Nonadiabatic excited-state molecular dynamics: Numerical tests of convergence and parameters; American Institute of Physics; Journal of Chemical Physics; 136; 5; 1-20120021-9606CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/full/10.1063/1.3680565info:eu-repo/semantics/altIdentifier/doi/ 10.1063/1.3680565info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:03Zoai:ri.conicet.gov.ar:11336/194503instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:04.077CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Nonadiabatic excited-state molecular dynamics: Numerical tests of convergence and parameters
title Nonadiabatic excited-state molecular dynamics: Numerical tests of convergence and parameters
spellingShingle Nonadiabatic excited-state molecular dynamics: Numerical tests of convergence and parameters
Nelson, Tammie
nonadiabatic molecular dynamics
excited states
title_short Nonadiabatic excited-state molecular dynamics: Numerical tests of convergence and parameters
title_full Nonadiabatic excited-state molecular dynamics: Numerical tests of convergence and parameters
title_fullStr Nonadiabatic excited-state molecular dynamics: Numerical tests of convergence and parameters
title_full_unstemmed Nonadiabatic excited-state molecular dynamics: Numerical tests of convergence and parameters
title_sort Nonadiabatic excited-state molecular dynamics: Numerical tests of convergence and parameters
dc.creator.none.fl_str_mv Nelson, Tammie
Fernández Alberti, Sebastián
Chernyak, Vladimir
Roitberg, Adrián
Tretiak, Sergei
author Nelson, Tammie
author_facet Nelson, Tammie
Fernández Alberti, Sebastián
Chernyak, Vladimir
Roitberg, Adrián
Tretiak, Sergei
author_role author
author2 Fernández Alberti, Sebastián
Chernyak, Vladimir
Roitberg, Adrián
Tretiak, Sergei
author2_role author
author
author
author
dc.subject.none.fl_str_mv nonadiabatic molecular dynamics
excited states
topic nonadiabatic molecular dynamics
excited states
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Nonadiabatic molecular dynamics simulations, involving multiple Born-Oppenheimer potential energy surfaces, often require a large number of independent trajectories in order to achieve the desired convergence of the results, and simulation relies on different parameters that should be tested and compared. In addition to influencing the speed of the simulation, the chosen parameters combined with the frequently reduced number of trajectories can sometimes lead to unanticipated changes in the accuracy of the simulated dynamics. We have previously developed a nonadiabatic excited state molecular dynamics methodology employing Tullys fewest switches surface hopping algorithm. In this study, we seek to investigate the impact of the number of trajectories and the various parameters on the simulation of the photoinduced dynamics of distyrylbenzene (a small oligomer of polyphenylene vinylene) within our developed framework. Various user-defined parameters are analyzed: classical and quantum integration time steps, the value of the friction coefficient for Langevin dynamics, and the initial seed used for stochastic thermostat and hopping algorithms. Common approximations such as reduced number of nonadiabatic coupling terms and the classical path approximation are also investigated. Our analysis shows that, at least for the considered molecular system, a minimum of ∼400 independent trajectories should be calculated in order to achieve statistical averaging necessary for convergence of the calculated relaxation timescales.
Fil: Nelson, Tammie. Los Alamos National Laboratory; Estados Unidos
Fil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Chernyak, Vladimir. Wayne State University (wayne State University); Estados Unidos
Fil: Roitberg, Adrián. University of Florida; Estados Unidos
Fil: Tretiak, Sergei. Los Alamos National High Magnetic Field Laboratory; Estados Unidos
description Nonadiabatic molecular dynamics simulations, involving multiple Born-Oppenheimer potential energy surfaces, often require a large number of independent trajectories in order to achieve the desired convergence of the results, and simulation relies on different parameters that should be tested and compared. In addition to influencing the speed of the simulation, the chosen parameters combined with the frequently reduced number of trajectories can sometimes lead to unanticipated changes in the accuracy of the simulated dynamics. We have previously developed a nonadiabatic excited state molecular dynamics methodology employing Tullys fewest switches surface hopping algorithm. In this study, we seek to investigate the impact of the number of trajectories and the various parameters on the simulation of the photoinduced dynamics of distyrylbenzene (a small oligomer of polyphenylene vinylene) within our developed framework. Various user-defined parameters are analyzed: classical and quantum integration time steps, the value of the friction coefficient for Langevin dynamics, and the initial seed used for stochastic thermostat and hopping algorithms. Common approximations such as reduced number of nonadiabatic coupling terms and the classical path approximation are also investigated. Our analysis shows that, at least for the considered molecular system, a minimum of ∼400 independent trajectories should be calculated in order to achieve statistical averaging necessary for convergence of the calculated relaxation timescales.
publishDate 2012
dc.date.none.fl_str_mv 2012-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/194503
Nelson, Tammie; Fernández Alberti, Sebastián; Chernyak, Vladimir; Roitberg, Adrián; Tretiak, Sergei; Nonadiabatic excited-state molecular dynamics: Numerical tests of convergence and parameters; American Institute of Physics; Journal of Chemical Physics; 136; 5; 1-2012
0021-9606
CONICET Digital
CONICET
url http://hdl.handle.net/11336/194503
identifier_str_mv Nelson, Tammie; Fernández Alberti, Sebastián; Chernyak, Vladimir; Roitberg, Adrián; Tretiak, Sergei; Nonadiabatic excited-state molecular dynamics: Numerical tests of convergence and parameters; American Institute of Physics; Journal of Chemical Physics; 136; 5; 1-2012
0021-9606
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/full/10.1063/1.3680565
info:eu-repo/semantics/altIdentifier/doi/ 10.1063/1.3680565
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269070774239232
score 13.13397