Nonadiabatic excited-state molecular dynamics: Numerical tests of convergence and parameters
- Autores
- Nelson, Tammie; Fernández Alberti, Sebastián; Chernyak, Vladimir; Roitberg, Adrián; Tretiak, Sergei
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Nonadiabatic molecular dynamics simulations, involving multiple Born-Oppenheimer potential energy surfaces, often require a large number of independent trajectories in order to achieve the desired convergence of the results, and simulation relies on different parameters that should be tested and compared. In addition to influencing the speed of the simulation, the chosen parameters combined with the frequently reduced number of trajectories can sometimes lead to unanticipated changes in the accuracy of the simulated dynamics. We have previously developed a nonadiabatic excited state molecular dynamics methodology employing Tullys fewest switches surface hopping algorithm. In this study, we seek to investigate the impact of the number of trajectories and the various parameters on the simulation of the photoinduced dynamics of distyrylbenzene (a small oligomer of polyphenylene vinylene) within our developed framework. Various user-defined parameters are analyzed: classical and quantum integration time steps, the value of the friction coefficient for Langevin dynamics, and the initial seed used for stochastic thermostat and hopping algorithms. Common approximations such as reduced number of nonadiabatic coupling terms and the classical path approximation are also investigated. Our analysis shows that, at least for the considered molecular system, a minimum of ∼400 independent trajectories should be calculated in order to achieve statistical averaging necessary for convergence of the calculated relaxation timescales.
Fil: Nelson, Tammie. Los Alamos National Laboratory; Estados Unidos
Fil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Chernyak, Vladimir. Wayne State University (wayne State University); Estados Unidos
Fil: Roitberg, Adrián. University of Florida; Estados Unidos
Fil: Tretiak, Sergei. Los Alamos National High Magnetic Field Laboratory; Estados Unidos - Materia
-
nonadiabatic molecular dynamics
excited states - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/194503
Ver los metadatos del registro completo
id |
CONICETDig_779f8189d03f22751c83b86e269c99e3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/194503 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Nonadiabatic excited-state molecular dynamics: Numerical tests of convergence and parametersNelson, TammieFernández Alberti, SebastiánChernyak, VladimirRoitberg, AdriánTretiak, Sergeinonadiabatic molecular dynamicsexcited stateshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Nonadiabatic molecular dynamics simulations, involving multiple Born-Oppenheimer potential energy surfaces, often require a large number of independent trajectories in order to achieve the desired convergence of the results, and simulation relies on different parameters that should be tested and compared. In addition to influencing the speed of the simulation, the chosen parameters combined with the frequently reduced number of trajectories can sometimes lead to unanticipated changes in the accuracy of the simulated dynamics. We have previously developed a nonadiabatic excited state molecular dynamics methodology employing Tullys fewest switches surface hopping algorithm. In this study, we seek to investigate the impact of the number of trajectories and the various parameters on the simulation of the photoinduced dynamics of distyrylbenzene (a small oligomer of polyphenylene vinylene) within our developed framework. Various user-defined parameters are analyzed: classical and quantum integration time steps, the value of the friction coefficient for Langevin dynamics, and the initial seed used for stochastic thermostat and hopping algorithms. Common approximations such as reduced number of nonadiabatic coupling terms and the classical path approximation are also investigated. Our analysis shows that, at least for the considered molecular system, a minimum of ∼400 independent trajectories should be calculated in order to achieve statistical averaging necessary for convergence of the calculated relaxation timescales.Fil: Nelson, Tammie. Los Alamos National Laboratory; Estados UnidosFil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Chernyak, Vladimir. Wayne State University (wayne State University); Estados UnidosFil: Roitberg, Adrián. University of Florida; Estados UnidosFil: Tretiak, Sergei. Los Alamos National High Magnetic Field Laboratory; Estados UnidosAmerican Institute of Physics2012-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/194503Nelson, Tammie; Fernández Alberti, Sebastián; Chernyak, Vladimir; Roitberg, Adrián; Tretiak, Sergei; Nonadiabatic excited-state molecular dynamics: Numerical tests of convergence and parameters; American Institute of Physics; Journal of Chemical Physics; 136; 5; 1-20120021-9606CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/full/10.1063/1.3680565info:eu-repo/semantics/altIdentifier/doi/ 10.1063/1.3680565info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:03Zoai:ri.conicet.gov.ar:11336/194503instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:04.077CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Nonadiabatic excited-state molecular dynamics: Numerical tests of convergence and parameters |
title |
Nonadiabatic excited-state molecular dynamics: Numerical tests of convergence and parameters |
spellingShingle |
Nonadiabatic excited-state molecular dynamics: Numerical tests of convergence and parameters Nelson, Tammie nonadiabatic molecular dynamics excited states |
title_short |
Nonadiabatic excited-state molecular dynamics: Numerical tests of convergence and parameters |
title_full |
Nonadiabatic excited-state molecular dynamics: Numerical tests of convergence and parameters |
title_fullStr |
Nonadiabatic excited-state molecular dynamics: Numerical tests of convergence and parameters |
title_full_unstemmed |
Nonadiabatic excited-state molecular dynamics: Numerical tests of convergence and parameters |
title_sort |
Nonadiabatic excited-state molecular dynamics: Numerical tests of convergence and parameters |
dc.creator.none.fl_str_mv |
Nelson, Tammie Fernández Alberti, Sebastián Chernyak, Vladimir Roitberg, Adrián Tretiak, Sergei |
author |
Nelson, Tammie |
author_facet |
Nelson, Tammie Fernández Alberti, Sebastián Chernyak, Vladimir Roitberg, Adrián Tretiak, Sergei |
author_role |
author |
author2 |
Fernández Alberti, Sebastián Chernyak, Vladimir Roitberg, Adrián Tretiak, Sergei |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
nonadiabatic molecular dynamics excited states |
topic |
nonadiabatic molecular dynamics excited states |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Nonadiabatic molecular dynamics simulations, involving multiple Born-Oppenheimer potential energy surfaces, often require a large number of independent trajectories in order to achieve the desired convergence of the results, and simulation relies on different parameters that should be tested and compared. In addition to influencing the speed of the simulation, the chosen parameters combined with the frequently reduced number of trajectories can sometimes lead to unanticipated changes in the accuracy of the simulated dynamics. We have previously developed a nonadiabatic excited state molecular dynamics methodology employing Tullys fewest switches surface hopping algorithm. In this study, we seek to investigate the impact of the number of trajectories and the various parameters on the simulation of the photoinduced dynamics of distyrylbenzene (a small oligomer of polyphenylene vinylene) within our developed framework. Various user-defined parameters are analyzed: classical and quantum integration time steps, the value of the friction coefficient for Langevin dynamics, and the initial seed used for stochastic thermostat and hopping algorithms. Common approximations such as reduced number of nonadiabatic coupling terms and the classical path approximation are also investigated. Our analysis shows that, at least for the considered molecular system, a minimum of ∼400 independent trajectories should be calculated in order to achieve statistical averaging necessary for convergence of the calculated relaxation timescales. Fil: Nelson, Tammie. Los Alamos National Laboratory; Estados Unidos Fil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Chernyak, Vladimir. Wayne State University (wayne State University); Estados Unidos Fil: Roitberg, Adrián. University of Florida; Estados Unidos Fil: Tretiak, Sergei. Los Alamos National High Magnetic Field Laboratory; Estados Unidos |
description |
Nonadiabatic molecular dynamics simulations, involving multiple Born-Oppenheimer potential energy surfaces, often require a large number of independent trajectories in order to achieve the desired convergence of the results, and simulation relies on different parameters that should be tested and compared. In addition to influencing the speed of the simulation, the chosen parameters combined with the frequently reduced number of trajectories can sometimes lead to unanticipated changes in the accuracy of the simulated dynamics. We have previously developed a nonadiabatic excited state molecular dynamics methodology employing Tullys fewest switches surface hopping algorithm. In this study, we seek to investigate the impact of the number of trajectories and the various parameters on the simulation of the photoinduced dynamics of distyrylbenzene (a small oligomer of polyphenylene vinylene) within our developed framework. Various user-defined parameters are analyzed: classical and quantum integration time steps, the value of the friction coefficient for Langevin dynamics, and the initial seed used for stochastic thermostat and hopping algorithms. Common approximations such as reduced number of nonadiabatic coupling terms and the classical path approximation are also investigated. Our analysis shows that, at least for the considered molecular system, a minimum of ∼400 independent trajectories should be calculated in order to achieve statistical averaging necessary for convergence of the calculated relaxation timescales. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/194503 Nelson, Tammie; Fernández Alberti, Sebastián; Chernyak, Vladimir; Roitberg, Adrián; Tretiak, Sergei; Nonadiabatic excited-state molecular dynamics: Numerical tests of convergence and parameters; American Institute of Physics; Journal of Chemical Physics; 136; 5; 1-2012 0021-9606 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/194503 |
identifier_str_mv |
Nelson, Tammie; Fernández Alberti, Sebastián; Chernyak, Vladimir; Roitberg, Adrián; Tretiak, Sergei; Nonadiabatic excited-state molecular dynamics: Numerical tests of convergence and parameters; American Institute of Physics; Journal of Chemical Physics; 136; 5; 1-2012 0021-9606 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/full/10.1063/1.3680565 info:eu-repo/semantics/altIdentifier/doi/ 10.1063/1.3680565 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269070774239232 |
score |
13.13397 |