Modeling of Internal Conversion in photoexcited conjugated molecular donor used in organic photovoltaics

Autores
Oldani, Andres Nicolas; Tetriak, Sergei; Bazan, Guillermo; Fernández Alberti, Sebastián
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Using the Non-Adiabatic Excited States Molecular Dynamics (NA-ESMD) approach, we investigate the ultrafast electronic relaxation in a recently synthesized small molecule donor, p-DTS(PTTh2)2, which belongs to the dithienosilole-pyridylthiadiazole family of chromophores. In combination with the PC70BM acceptor, p-DTS(PTTh2)2 can be used to fabricate high efficiency bulk heterojunction organic solar cells. After photoexcitation to its broad high-energy peak in the 3–4 eV range, associated with multiple excited states, p-DTS(PTTh2)2 undergoes efficient ultrafast internal conversion to its lowest excited state. During this process, about 1–2 eV electronic energy transfers to the vibrational degrees of freedom leading to rapid heating of the molecule. Nevertheless, our simulations do not detect possible bond-breaking or decomposition of the system. This suggests minimal intra-molecular photodamage after photoexcitation to high-energy states in the 3–4 eV region. Calculated radiationless deactivation mainly consists of a sequential mechanism that involves electronic transitions between the current transient state and the corresponding state directly below in energy. Changes in the density of states along the relaxation process lead to pronounced variations and time-dependence of the accumulated populations of the different intermediate electronic excited states. Visualization of the electronic transition density during internal conversion reveals spatial intramolecular delocalization of electronic excitation from the thiophene moieties to the entire chromophore. Finally, our analysis of non-adiabatic coupling vectors suggests characteristic vibrational degrees of freedom coupled to the electronic system during various stages of non-radiative relaxation.
Fil: Oldani, Andres Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes; Argentina
Fil: Tetriak, Sergei. Los Alamos National Laboratory. Center for Nonlinear Studies; Estados Unidos. Los Alamos National Laboratory. Center for Integrated Nanotechnologies; Estados Unidos
Fil: Bazan, Guillermo. University of California; Estados Unidos
Fil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Excited States
Internal Conversion
Nonadiabatic Dynamics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/33074

id CONICETDig_a14ffdee4006aa12895bffa0a6438961
oai_identifier_str oai:ri.conicet.gov.ar:11336/33074
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Modeling of Internal Conversion in photoexcited conjugated molecular donor used in organic photovoltaicsOldani, Andres NicolasTetriak, SergeiBazan, GuillermoFernández Alberti, SebastiánExcited StatesInternal ConversionNonadiabatic Dynamicshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Using the Non-Adiabatic Excited States Molecular Dynamics (NA-ESMD) approach, we investigate the ultrafast electronic relaxation in a recently synthesized small molecule donor, p-DTS(PTTh2)2, which belongs to the dithienosilole-pyridylthiadiazole family of chromophores. In combination with the PC70BM acceptor, p-DTS(PTTh2)2 can be used to fabricate high efficiency bulk heterojunction organic solar cells. After photoexcitation to its broad high-energy peak in the 3–4 eV range, associated with multiple excited states, p-DTS(PTTh2)2 undergoes efficient ultrafast internal conversion to its lowest excited state. During this process, about 1–2 eV electronic energy transfers to the vibrational degrees of freedom leading to rapid heating of the molecule. Nevertheless, our simulations do not detect possible bond-breaking or decomposition of the system. This suggests minimal intra-molecular photodamage after photoexcitation to high-energy states in the 3–4 eV region. Calculated radiationless deactivation mainly consists of a sequential mechanism that involves electronic transitions between the current transient state and the corresponding state directly below in energy. Changes in the density of states along the relaxation process lead to pronounced variations and time-dependence of the accumulated populations of the different intermediate electronic excited states. Visualization of the electronic transition density during internal conversion reveals spatial intramolecular delocalization of electronic excitation from the thiophene moieties to the entire chromophore. Finally, our analysis of non-adiabatic coupling vectors suggests characteristic vibrational degrees of freedom coupled to the electronic system during various stages of non-radiative relaxation.Fil: Oldani, Andres Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Tetriak, Sergei. Los Alamos National Laboratory. Center for Nonlinear Studies; Estados Unidos. Los Alamos National Laboratory. Center for Integrated Nanotechnologies; Estados UnidosFil: Bazan, Guillermo. University of California; Estados UnidosFil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaRoyal Society of Chemistry2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33074Oldani, Andres Nicolas; Tetriak, Sergei; Bazan, Guillermo; Fernández Alberti, Sebastián; Modeling of Internal Conversion in photoexcited conjugated molecular donor used in organic photovoltaics; Royal Society of Chemistry; Energy & Environmental Science; 7; 3; 1-2014; 1175-11841754-5692CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/content/articlelanding/2014/ee/c3ee43170c#!divAbstractinfo:eu-repo/semantics/altIdentifier/doi/10.1039/C3EE43170Cinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:09:00Zoai:ri.conicet.gov.ar:11336/33074instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:09:00.987CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Modeling of Internal Conversion in photoexcited conjugated molecular donor used in organic photovoltaics
title Modeling of Internal Conversion in photoexcited conjugated molecular donor used in organic photovoltaics
spellingShingle Modeling of Internal Conversion in photoexcited conjugated molecular donor used in organic photovoltaics
Oldani, Andres Nicolas
Excited States
Internal Conversion
Nonadiabatic Dynamics
title_short Modeling of Internal Conversion in photoexcited conjugated molecular donor used in organic photovoltaics
title_full Modeling of Internal Conversion in photoexcited conjugated molecular donor used in organic photovoltaics
title_fullStr Modeling of Internal Conversion in photoexcited conjugated molecular donor used in organic photovoltaics
title_full_unstemmed Modeling of Internal Conversion in photoexcited conjugated molecular donor used in organic photovoltaics
title_sort Modeling of Internal Conversion in photoexcited conjugated molecular donor used in organic photovoltaics
dc.creator.none.fl_str_mv Oldani, Andres Nicolas
Tetriak, Sergei
Bazan, Guillermo
Fernández Alberti, Sebastián
author Oldani, Andres Nicolas
author_facet Oldani, Andres Nicolas
Tetriak, Sergei
Bazan, Guillermo
Fernández Alberti, Sebastián
author_role author
author2 Tetriak, Sergei
Bazan, Guillermo
Fernández Alberti, Sebastián
author2_role author
author
author
dc.subject.none.fl_str_mv Excited States
Internal Conversion
Nonadiabatic Dynamics
topic Excited States
Internal Conversion
Nonadiabatic Dynamics
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Using the Non-Adiabatic Excited States Molecular Dynamics (NA-ESMD) approach, we investigate the ultrafast electronic relaxation in a recently synthesized small molecule donor, p-DTS(PTTh2)2, which belongs to the dithienosilole-pyridylthiadiazole family of chromophores. In combination with the PC70BM acceptor, p-DTS(PTTh2)2 can be used to fabricate high efficiency bulk heterojunction organic solar cells. After photoexcitation to its broad high-energy peak in the 3–4 eV range, associated with multiple excited states, p-DTS(PTTh2)2 undergoes efficient ultrafast internal conversion to its lowest excited state. During this process, about 1–2 eV electronic energy transfers to the vibrational degrees of freedom leading to rapid heating of the molecule. Nevertheless, our simulations do not detect possible bond-breaking or decomposition of the system. This suggests minimal intra-molecular photodamage after photoexcitation to high-energy states in the 3–4 eV region. Calculated radiationless deactivation mainly consists of a sequential mechanism that involves electronic transitions between the current transient state and the corresponding state directly below in energy. Changes in the density of states along the relaxation process lead to pronounced variations and time-dependence of the accumulated populations of the different intermediate electronic excited states. Visualization of the electronic transition density during internal conversion reveals spatial intramolecular delocalization of electronic excitation from the thiophene moieties to the entire chromophore. Finally, our analysis of non-adiabatic coupling vectors suggests characteristic vibrational degrees of freedom coupled to the electronic system during various stages of non-radiative relaxation.
Fil: Oldani, Andres Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes; Argentina
Fil: Tetriak, Sergei. Los Alamos National Laboratory. Center for Nonlinear Studies; Estados Unidos. Los Alamos National Laboratory. Center for Integrated Nanotechnologies; Estados Unidos
Fil: Bazan, Guillermo. University of California; Estados Unidos
Fil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Using the Non-Adiabatic Excited States Molecular Dynamics (NA-ESMD) approach, we investigate the ultrafast electronic relaxation in a recently synthesized small molecule donor, p-DTS(PTTh2)2, which belongs to the dithienosilole-pyridylthiadiazole family of chromophores. In combination with the PC70BM acceptor, p-DTS(PTTh2)2 can be used to fabricate high efficiency bulk heterojunction organic solar cells. After photoexcitation to its broad high-energy peak in the 3–4 eV range, associated with multiple excited states, p-DTS(PTTh2)2 undergoes efficient ultrafast internal conversion to its lowest excited state. During this process, about 1–2 eV electronic energy transfers to the vibrational degrees of freedom leading to rapid heating of the molecule. Nevertheless, our simulations do not detect possible bond-breaking or decomposition of the system. This suggests minimal intra-molecular photodamage after photoexcitation to high-energy states in the 3–4 eV region. Calculated radiationless deactivation mainly consists of a sequential mechanism that involves electronic transitions between the current transient state and the corresponding state directly below in energy. Changes in the density of states along the relaxation process lead to pronounced variations and time-dependence of the accumulated populations of the different intermediate electronic excited states. Visualization of the electronic transition density during internal conversion reveals spatial intramolecular delocalization of electronic excitation from the thiophene moieties to the entire chromophore. Finally, our analysis of non-adiabatic coupling vectors suggests characteristic vibrational degrees of freedom coupled to the electronic system during various stages of non-radiative relaxation.
publishDate 2014
dc.date.none.fl_str_mv 2014-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/33074
Oldani, Andres Nicolas; Tetriak, Sergei; Bazan, Guillermo; Fernández Alberti, Sebastián; Modeling of Internal Conversion in photoexcited conjugated molecular donor used in organic photovoltaics; Royal Society of Chemistry; Energy & Environmental Science; 7; 3; 1-2014; 1175-1184
1754-5692
CONICET Digital
CONICET
url http://hdl.handle.net/11336/33074
identifier_str_mv Oldani, Andres Nicolas; Tetriak, Sergei; Bazan, Guillermo; Fernández Alberti, Sebastián; Modeling of Internal Conversion in photoexcited conjugated molecular donor used in organic photovoltaics; Royal Society of Chemistry; Energy & Environmental Science; 7; 3; 1-2014; 1175-1184
1754-5692
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/content/articlelanding/2014/ee/c3ee43170c#!divAbstract
info:eu-repo/semantics/altIdentifier/doi/10.1039/C3EE43170C
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782465105985536
score 12.982451