Lagrangian systems with higher order constraints
- Autores
- Cendra, Hernan; Grillo, Sergio Daniel
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A class of mechanical systems subject to higher order constraints (i.e., constraints involving higher order derivatives of the position of the system) are studied. We call them higher order constrained systems (HOCSs). They include simplified models of elastic rolling bodies, and also the so-called generalized nonholonomic systems GNHSs, whose constraints only involve the velocities of the system i.e., first order derivatives in the position of the system. One of the features of this kind of systems is that D’Alembert’s principle or its nonlinear higher order generalization, the Chetaev’s principle is not necessarily satisfied. We present here, as another interesting example of HOCS, systems subjected to friction forces, showing that those forces can be encoded in a second order kinematic constraint. The main aim of the paper is to show that every HOCS is equivalent to a GNHS with linear constraints, in a canonical way. That is to say, systems with higher order constraints can be described in terms of one with linear constraints in velocities. We illustrate this fact with a system with friction and with Rocard’s model Dynamique Générale des Vibrations (1949), Chap. XV, p. 246 and L’instabilité en Mécanique; Automobiles, Avions, Ponts Suspendus (1954) of a pneumatic tire. As a by-product, we introduce some applications on higher order tangent bundles, which we expect to be useful for the study of intrinsic aspects of the geometry of such bundles.
Fil: Cendra, Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina
Fil: Grillo, Sergio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina - Materia
-
Mechanics
Geometry
Constraints - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/80159
Ver los metadatos del registro completo
id |
CONICETDig_77890718cdefb54f42b00d437efc8eb7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/80159 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Lagrangian systems with higher order constraintsCendra, HernanGrillo, Sergio DanielMechanicsGeometryConstraintshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A class of mechanical systems subject to higher order constraints (i.e., constraints involving higher order derivatives of the position of the system) are studied. We call them higher order constrained systems (HOCSs). They include simplified models of elastic rolling bodies, and also the so-called generalized nonholonomic systems GNHSs, whose constraints only involve the velocities of the system i.e., first order derivatives in the position of the system. One of the features of this kind of systems is that D’Alembert’s principle or its nonlinear higher order generalization, the Chetaev’s principle is not necessarily satisfied. We present here, as another interesting example of HOCS, systems subjected to friction forces, showing that those forces can be encoded in a second order kinematic constraint. The main aim of the paper is to show that every HOCS is equivalent to a GNHS with linear constraints, in a canonical way. That is to say, systems with higher order constraints can be described in terms of one with linear constraints in velocities. We illustrate this fact with a system with friction and with Rocard’s model Dynamique Générale des Vibrations (1949), Chap. XV, p. 246 and L’instabilité en Mécanique; Automobiles, Avions, Ponts Suspendus (1954) of a pneumatic tire. As a by-product, we introduce some applications on higher order tangent bundles, which we expect to be useful for the study of intrinsic aspects of the geometry of such bundles.Fil: Cendra, Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; ArgentinaFil: Grillo, Sergio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaAmerican Institute of Physics2007-05-31info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/80159Cendra, Hernan; Grillo, Sergio Daniel; Lagrangian systems with higher order constraints; American Institute of Physics; Journal of Mathematical Physics; 48; 5; 31-5-2007; 1-350022-24881089-7658CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/abs/10.1063/1.2740470?journalCode=jmpinfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.2740470info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:34:16Zoai:ri.conicet.gov.ar:11336/80159instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:34:16.732CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Lagrangian systems with higher order constraints |
title |
Lagrangian systems with higher order constraints |
spellingShingle |
Lagrangian systems with higher order constraints Cendra, Hernan Mechanics Geometry Constraints |
title_short |
Lagrangian systems with higher order constraints |
title_full |
Lagrangian systems with higher order constraints |
title_fullStr |
Lagrangian systems with higher order constraints |
title_full_unstemmed |
Lagrangian systems with higher order constraints |
title_sort |
Lagrangian systems with higher order constraints |
dc.creator.none.fl_str_mv |
Cendra, Hernan Grillo, Sergio Daniel |
author |
Cendra, Hernan |
author_facet |
Cendra, Hernan Grillo, Sergio Daniel |
author_role |
author |
author2 |
Grillo, Sergio Daniel |
author2_role |
author |
dc.subject.none.fl_str_mv |
Mechanics Geometry Constraints |
topic |
Mechanics Geometry Constraints |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A class of mechanical systems subject to higher order constraints (i.e., constraints involving higher order derivatives of the position of the system) are studied. We call them higher order constrained systems (HOCSs). They include simplified models of elastic rolling bodies, and also the so-called generalized nonholonomic systems GNHSs, whose constraints only involve the velocities of the system i.e., first order derivatives in the position of the system. One of the features of this kind of systems is that D’Alembert’s principle or its nonlinear higher order generalization, the Chetaev’s principle is not necessarily satisfied. We present here, as another interesting example of HOCS, systems subjected to friction forces, showing that those forces can be encoded in a second order kinematic constraint. The main aim of the paper is to show that every HOCS is equivalent to a GNHS with linear constraints, in a canonical way. That is to say, systems with higher order constraints can be described in terms of one with linear constraints in velocities. We illustrate this fact with a system with friction and with Rocard’s model Dynamique Générale des Vibrations (1949), Chap. XV, p. 246 and L’instabilité en Mécanique; Automobiles, Avions, Ponts Suspendus (1954) of a pneumatic tire. As a by-product, we introduce some applications on higher order tangent bundles, which we expect to be useful for the study of intrinsic aspects of the geometry of such bundles. Fil: Cendra, Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina Fil: Grillo, Sergio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina |
description |
A class of mechanical systems subject to higher order constraints (i.e., constraints involving higher order derivatives of the position of the system) are studied. We call them higher order constrained systems (HOCSs). They include simplified models of elastic rolling bodies, and also the so-called generalized nonholonomic systems GNHSs, whose constraints only involve the velocities of the system i.e., first order derivatives in the position of the system. One of the features of this kind of systems is that D’Alembert’s principle or its nonlinear higher order generalization, the Chetaev’s principle is not necessarily satisfied. We present here, as another interesting example of HOCS, systems subjected to friction forces, showing that those forces can be encoded in a second order kinematic constraint. The main aim of the paper is to show that every HOCS is equivalent to a GNHS with linear constraints, in a canonical way. That is to say, systems with higher order constraints can be described in terms of one with linear constraints in velocities. We illustrate this fact with a system with friction and with Rocard’s model Dynamique Générale des Vibrations (1949), Chap. XV, p. 246 and L’instabilité en Mécanique; Automobiles, Avions, Ponts Suspendus (1954) of a pneumatic tire. As a by-product, we introduce some applications on higher order tangent bundles, which we expect to be useful for the study of intrinsic aspects of the geometry of such bundles. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-05-31 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/80159 Cendra, Hernan; Grillo, Sergio Daniel; Lagrangian systems with higher order constraints; American Institute of Physics; Journal of Mathematical Physics; 48; 5; 31-5-2007; 1-35 0022-2488 1089-7658 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/80159 |
identifier_str_mv |
Cendra, Hernan; Grillo, Sergio Daniel; Lagrangian systems with higher order constraints; American Institute of Physics; Journal of Mathematical Physics; 48; 5; 31-5-2007; 1-35 0022-2488 1089-7658 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/abs/10.1063/1.2740470?journalCode=jmp info:eu-repo/semantics/altIdentifier/doi/10.1063/1.2740470 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614359191388160 |
score |
13.070432 |