Lagrangian systems with higher order constraints

Autores
Cendra, Hernan; Grillo, Sergio Daniel
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A class of mechanical systems subject to higher order constraints (i.e., constraints involving higher order derivatives of the position of the system) are studied. We call them higher order constrained systems (HOCSs). They include simplified models of elastic rolling bodies, and also the so-called generalized nonholonomic systems GNHSs, whose constraints only involve the velocities of the system i.e., first order derivatives in the position of the system. One of the features of this kind of systems is that D’Alembert’s principle or its nonlinear higher order generalization, the Chetaev’s principle is not necessarily satisfied. We present here, as another interesting example of HOCS, systems subjected to friction forces, showing that those forces can be encoded in a second order kinematic constraint. The main aim of the paper is to show that every HOCS is equivalent to a GNHS with linear constraints, in a canonical way. That is to say, systems with higher order constraints can be described in terms of one with linear constraints in velocities. We illustrate this fact with a system with friction and with Rocard’s model Dynamique Générale des Vibrations (1949), Chap. XV, p. 246 and L’instabilité en Mécanique; Automobiles, Avions, Ponts Suspendus (1954) of a pneumatic tire. As a by-product, we introduce some applications on higher order tangent bundles, which we expect to be useful for the study of intrinsic aspects of the geometry of such bundles.
Fil: Cendra, Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina
Fil: Grillo, Sergio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Materia
Mechanics
Geometry
Constraints
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/80159

id CONICETDig_77890718cdefb54f42b00d437efc8eb7
oai_identifier_str oai:ri.conicet.gov.ar:11336/80159
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Lagrangian systems with higher order constraintsCendra, HernanGrillo, Sergio DanielMechanicsGeometryConstraintshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A class of mechanical systems subject to higher order constraints (i.e., constraints involving higher order derivatives of the position of the system) are studied. We call them higher order constrained systems (HOCSs). They include simplified models of elastic rolling bodies, and also the so-called generalized nonholonomic systems GNHSs, whose constraints only involve the velocities of the system i.e., first order derivatives in the position of the system. One of the features of this kind of systems is that D’Alembert’s principle or its nonlinear higher order generalization, the Chetaev’s principle is not necessarily satisfied. We present here, as another interesting example of HOCS, systems subjected to friction forces, showing that those forces can be encoded in a second order kinematic constraint. The main aim of the paper is to show that every HOCS is equivalent to a GNHS with linear constraints, in a canonical way. That is to say, systems with higher order constraints can be described in terms of one with linear constraints in velocities. We illustrate this fact with a system with friction and with Rocard’s model Dynamique Générale des Vibrations (1949), Chap. XV, p. 246 and L’instabilité en Mécanique; Automobiles, Avions, Ponts Suspendus (1954) of a pneumatic tire. As a by-product, we introduce some applications on higher order tangent bundles, which we expect to be useful for the study of intrinsic aspects of the geometry of such bundles.Fil: Cendra, Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; ArgentinaFil: Grillo, Sergio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaAmerican Institute of Physics2007-05-31info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/80159Cendra, Hernan; Grillo, Sergio Daniel; Lagrangian systems with higher order constraints; American Institute of Physics; Journal of Mathematical Physics; 48; 5; 31-5-2007; 1-350022-24881089-7658CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/abs/10.1063/1.2740470?journalCode=jmpinfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.2740470info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:34:16Zoai:ri.conicet.gov.ar:11336/80159instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:34:16.732CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Lagrangian systems with higher order constraints
title Lagrangian systems with higher order constraints
spellingShingle Lagrangian systems with higher order constraints
Cendra, Hernan
Mechanics
Geometry
Constraints
title_short Lagrangian systems with higher order constraints
title_full Lagrangian systems with higher order constraints
title_fullStr Lagrangian systems with higher order constraints
title_full_unstemmed Lagrangian systems with higher order constraints
title_sort Lagrangian systems with higher order constraints
dc.creator.none.fl_str_mv Cendra, Hernan
Grillo, Sergio Daniel
author Cendra, Hernan
author_facet Cendra, Hernan
Grillo, Sergio Daniel
author_role author
author2 Grillo, Sergio Daniel
author2_role author
dc.subject.none.fl_str_mv Mechanics
Geometry
Constraints
topic Mechanics
Geometry
Constraints
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A class of mechanical systems subject to higher order constraints (i.e., constraints involving higher order derivatives of the position of the system) are studied. We call them higher order constrained systems (HOCSs). They include simplified models of elastic rolling bodies, and also the so-called generalized nonholonomic systems GNHSs, whose constraints only involve the velocities of the system i.e., first order derivatives in the position of the system. One of the features of this kind of systems is that D’Alembert’s principle or its nonlinear higher order generalization, the Chetaev’s principle is not necessarily satisfied. We present here, as another interesting example of HOCS, systems subjected to friction forces, showing that those forces can be encoded in a second order kinematic constraint. The main aim of the paper is to show that every HOCS is equivalent to a GNHS with linear constraints, in a canonical way. That is to say, systems with higher order constraints can be described in terms of one with linear constraints in velocities. We illustrate this fact with a system with friction and with Rocard’s model Dynamique Générale des Vibrations (1949), Chap. XV, p. 246 and L’instabilité en Mécanique; Automobiles, Avions, Ponts Suspendus (1954) of a pneumatic tire. As a by-product, we introduce some applications on higher order tangent bundles, which we expect to be useful for the study of intrinsic aspects of the geometry of such bundles.
Fil: Cendra, Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina
Fil: Grillo, Sergio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
description A class of mechanical systems subject to higher order constraints (i.e., constraints involving higher order derivatives of the position of the system) are studied. We call them higher order constrained systems (HOCSs). They include simplified models of elastic rolling bodies, and also the so-called generalized nonholonomic systems GNHSs, whose constraints only involve the velocities of the system i.e., first order derivatives in the position of the system. One of the features of this kind of systems is that D’Alembert’s principle or its nonlinear higher order generalization, the Chetaev’s principle is not necessarily satisfied. We present here, as another interesting example of HOCS, systems subjected to friction forces, showing that those forces can be encoded in a second order kinematic constraint. The main aim of the paper is to show that every HOCS is equivalent to a GNHS with linear constraints, in a canonical way. That is to say, systems with higher order constraints can be described in terms of one with linear constraints in velocities. We illustrate this fact with a system with friction and with Rocard’s model Dynamique Générale des Vibrations (1949), Chap. XV, p. 246 and L’instabilité en Mécanique; Automobiles, Avions, Ponts Suspendus (1954) of a pneumatic tire. As a by-product, we introduce some applications on higher order tangent bundles, which we expect to be useful for the study of intrinsic aspects of the geometry of such bundles.
publishDate 2007
dc.date.none.fl_str_mv 2007-05-31
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/80159
Cendra, Hernan; Grillo, Sergio Daniel; Lagrangian systems with higher order constraints; American Institute of Physics; Journal of Mathematical Physics; 48; 5; 31-5-2007; 1-35
0022-2488
1089-7658
CONICET Digital
CONICET
url http://hdl.handle.net/11336/80159
identifier_str_mv Cendra, Hernan; Grillo, Sergio Daniel; Lagrangian systems with higher order constraints; American Institute of Physics; Journal of Mathematical Physics; 48; 5; 31-5-2007; 1-35
0022-2488
1089-7658
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/abs/10.1063/1.2740470?journalCode=jmp
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.2740470
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614359191388160
score 13.070432