Phospholipid turnover and phospholipase D activity in tobacco hairy roots exposed to phenol
- Autores
- Sosa Alderete, Lucas Gastón; Racagni, Graciela Esther; Agostini, Elizabeth; Medina, María I.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Plants are exposed to a great variety of environmental factors, which can affect their survival. In addition, the rapid urbanization and the increased release of different pollutants, such as phenol, to the environment, produce another stressful condition to the development and growth of the plants. In this work, we studied the effects on the [32P]Piphospholipid turnover and phospholipase D (PLD) activity after phenol treatment, using tobacco hairy roots (HRs), double transgenic (DT) for two peroxidase genes (tpx1 and tpx2) and wild type (WT) ones. In both HRs, the [32P]phospholipid turnover of the most abundant phospholipids (PLs), such as phosphatidylcholine (PC), phosphatydilethanolamine (PE), phosphatydilglycerol (PG) and cardiolipin (CL) did not show any changes after phenol treatment. However, modifications in the minor PLs of both HRs were observed. Phenol treatment significantly increases the turnover of phosphatidic acid (PA) and phosphatydilinositol (PI), in WT HRs. In DT HRs, phenol produced significant increase in the turnover of PI, lisophosphatidic acid (LPA), diacylglycerolpyrophosphate (DGPP) and PA with a concomitant decrease in the phosphatidylinositol monophosphate (PIP). Moreover, phosphatidylinositol bisphosphate (PIP2) was detected, but its level did not change in presence of the pollutant. Phenol treatment significantly increased the PLD activity of both HRs. In WT HRs the increase was 100% higher than the control, whereas in DT HRs it was about to 50%. These results suggest the participation of minor PLs, mainly PA, and the PLD pathway as one source of PA production in the activation of intracellular mechanisms that might be important in the response of these plant tissues to phenol treatment.32P]Piphospholipid turnover and phospholipase D (PLD) activity after phenol treatment, using tobacco hairy roots (HRs), double transgenic (DT) for two peroxidase genes (tpx1 and tpx2) and wild type (WT) ones. In both HRs, the [32P]phospholipid turnover of the most abundant phospholipids (PLs), such as phosphatidylcholine (PC), phosphatydilethanolamine (PE), phosphatydilglycerol (PG) and cardiolipin (CL) did not show any changes after phenol treatment. However, modifications in the minor PLs of both HRs were observed. Phenol treatment significantly increases the turnover of phosphatidic acid (PA) and phosphatydilinositol (PI), in WT HRs. In DT HRs, phenol produced significant increase in the turnover of PI, lisophosphatidic acid (LPA), diacylglycerolpyrophosphate (DGPP) and PA with a concomitant decrease in the phosphatidylinositol monophosphate (PIP). Moreover, phosphatidylinositol bisphosphate (PIP2) was detected, but its level did not change in presence of the pollutant. Phenol treatment significantly increased the PLD activity of both HRs. In WT HRs the increase was 100% higher than the control, whereas in DT HRs it was about to 50%. These results suggest the participation of minor PLs, mainly PA, and the PLD pathway as one source of PA production in the activation of intracellular mechanisms that might be important in the response of these plant tissues to phenol treatment.32P]phospholipid turnover of the most abundant phospholipids (PLs), such as phosphatidylcholine (PC), phosphatydilethanolamine (PE), phosphatydilglycerol (PG) and cardiolipin (CL) did not show any changes after phenol treatment. However, modifications in the minor PLs of both HRs were observed. Phenol treatment significantly increases the turnover of phosphatidic acid (PA) and phosphatydilinositol (PI), in WT HRs. In DT HRs, phenol produced significant increase in the turnover of PI, lisophosphatidic acid (LPA), diacylglycerolpyrophosphate (DGPP) and PA with a concomitant decrease in the phosphatidylinositol monophosphate (PIP). Moreover, phosphatidylinositol bisphosphate (PIP2) was detected, but its level did not change in presence of the pollutant. Phenol treatment significantly increased the PLD activity of both HRs. In WT HRs the increase was 100% higher than the control, whereas in DT HRs it was about to 50%. These results suggest the participation of minor PLs, mainly PA, and the PLD pathway as one source of PA production in the activation of intracellular mechanisms that might be important in the response of these plant tissues to phenol treatment.2) was detected, but its level did not change in presence of the pollutant. Phenol treatment significantly increased the PLD activity of both HRs. In WT HRs the increase was 100% higher than the control, whereas in DT HRs it was about to 50%. These results suggest the participation of minor PLs, mainly PA, and the PLD pathway as one source of PA production in the activation of intracellular mechanisms that might be important in the response of these plant tissues to phenol treatment.
Fil: Sosa Alderete, Lucas Gastón. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Biotecnología Ambiental y Salud - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Biotecnología Ambiental y Salud; Argentina
Fil: Racagni, Graciela Esther. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales; Argentina
Fil: Agostini, Elizabeth. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Biotecnología Ambiental y Salud - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Biotecnología Ambiental y Salud; Argentina
Fil: Medina, María I.. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales; Argentina - Materia
-
PHENOL
PLD
PHOSPHOLIPIDS
SIGNAL TRANSDUCTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/230401
Ver los metadatos del registro completo
id |
CONICETDig_776ebc9762dc2c8a36e5edc4bb6de246 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/230401 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Phospholipid turnover and phospholipase D activity in tobacco hairy roots exposed to phenolSosa Alderete, Lucas GastónRacagni, Graciela EstherAgostini, ElizabethMedina, María I.PHENOLPLDPHOSPHOLIPIDSSIGNAL TRANSDUCTIONhttps://purl.org/becyt/ford/2.8https://purl.org/becyt/ford/2Plants are exposed to a great variety of environmental factors, which can affect their survival. In addition, the rapid urbanization and the increased release of different pollutants, such as phenol, to the environment, produce another stressful condition to the development and growth of the plants. In this work, we studied the effects on the [32P]Piphospholipid turnover and phospholipase D (PLD) activity after phenol treatment, using tobacco hairy roots (HRs), double transgenic (DT) for two peroxidase genes (tpx1 and tpx2) and wild type (WT) ones. In both HRs, the [32P]phospholipid turnover of the most abundant phospholipids (PLs), such as phosphatidylcholine (PC), phosphatydilethanolamine (PE), phosphatydilglycerol (PG) and cardiolipin (CL) did not show any changes after phenol treatment. However, modifications in the minor PLs of both HRs were observed. Phenol treatment significantly increases the turnover of phosphatidic acid (PA) and phosphatydilinositol (PI), in WT HRs. In DT HRs, phenol produced significant increase in the turnover of PI, lisophosphatidic acid (LPA), diacylglycerolpyrophosphate (DGPP) and PA with a concomitant decrease in the phosphatidylinositol monophosphate (PIP). Moreover, phosphatidylinositol bisphosphate (PIP2) was detected, but its level did not change in presence of the pollutant. Phenol treatment significantly increased the PLD activity of both HRs. In WT HRs the increase was 100% higher than the control, whereas in DT HRs it was about to 50%. These results suggest the participation of minor PLs, mainly PA, and the PLD pathway as one source of PA production in the activation of intracellular mechanisms that might be important in the response of these plant tissues to phenol treatment.32P]Piphospholipid turnover and phospholipase D (PLD) activity after phenol treatment, using tobacco hairy roots (HRs), double transgenic (DT) for two peroxidase genes (tpx1 and tpx2) and wild type (WT) ones. In both HRs, the [32P]phospholipid turnover of the most abundant phospholipids (PLs), such as phosphatidylcholine (PC), phosphatydilethanolamine (PE), phosphatydilglycerol (PG) and cardiolipin (CL) did not show any changes after phenol treatment. However, modifications in the minor PLs of both HRs were observed. Phenol treatment significantly increases the turnover of phosphatidic acid (PA) and phosphatydilinositol (PI), in WT HRs. In DT HRs, phenol produced significant increase in the turnover of PI, lisophosphatidic acid (LPA), diacylglycerolpyrophosphate (DGPP) and PA with a concomitant decrease in the phosphatidylinositol monophosphate (PIP). Moreover, phosphatidylinositol bisphosphate (PIP2) was detected, but its level did not change in presence of the pollutant. Phenol treatment significantly increased the PLD activity of both HRs. In WT HRs the increase was 100% higher than the control, whereas in DT HRs it was about to 50%. These results suggest the participation of minor PLs, mainly PA, and the PLD pathway as one source of PA production in the activation of intracellular mechanisms that might be important in the response of these plant tissues to phenol treatment.32P]phospholipid turnover of the most abundant phospholipids (PLs), such as phosphatidylcholine (PC), phosphatydilethanolamine (PE), phosphatydilglycerol (PG) and cardiolipin (CL) did not show any changes after phenol treatment. However, modifications in the minor PLs of both HRs were observed. Phenol treatment significantly increases the turnover of phosphatidic acid (PA) and phosphatydilinositol (PI), in WT HRs. In DT HRs, phenol produced significant increase in the turnover of PI, lisophosphatidic acid (LPA), diacylglycerolpyrophosphate (DGPP) and PA with a concomitant decrease in the phosphatidylinositol monophosphate (PIP). Moreover, phosphatidylinositol bisphosphate (PIP2) was detected, but its level did not change in presence of the pollutant. Phenol treatment significantly increased the PLD activity of both HRs. In WT HRs the increase was 100% higher than the control, whereas in DT HRs it was about to 50%. These results suggest the participation of minor PLs, mainly PA, and the PLD pathway as one source of PA production in the activation of intracellular mechanisms that might be important in the response of these plant tissues to phenol treatment.2) was detected, but its level did not change in presence of the pollutant. Phenol treatment significantly increased the PLD activity of both HRs. In WT HRs the increase was 100% higher than the control, whereas in DT HRs it was about to 50%. These results suggest the participation of minor PLs, mainly PA, and the PLD pathway as one source of PA production in the activation of intracellular mechanisms that might be important in the response of these plant tissues to phenol treatment.Fil: Sosa Alderete, Lucas Gastón. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Biotecnología Ambiental y Salud - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Biotecnología Ambiental y Salud; ArgentinaFil: Racagni, Graciela Esther. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales; ArgentinaFil: Agostini, Elizabeth. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Biotecnología Ambiental y Salud - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Biotecnología Ambiental y Salud; ArgentinaFil: Medina, María I.. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales; ArgentinaPergamon-Elsevier Science Ltd2012-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/230401Sosa Alderete, Lucas Gastón; Racagni, Graciela Esther; Agostini, Elizabeth; Medina, María I.; Phospholipid turnover and phospholipase D activity in tobacco hairy roots exposed to phenol; Pergamon-Elsevier Science Ltd; Environmental and Experimental Botany; 77; 4-2012; 141-1450098-84721873-7307CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.envexpbot.2011.11.006info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0098847211002826info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:04:44Zoai:ri.conicet.gov.ar:11336/230401instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:04:44.313CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Phospholipid turnover and phospholipase D activity in tobacco hairy roots exposed to phenol |
title |
Phospholipid turnover and phospholipase D activity in tobacco hairy roots exposed to phenol |
spellingShingle |
Phospholipid turnover and phospholipase D activity in tobacco hairy roots exposed to phenol Sosa Alderete, Lucas Gastón PHENOL PLD PHOSPHOLIPIDS SIGNAL TRANSDUCTION |
title_short |
Phospholipid turnover and phospholipase D activity in tobacco hairy roots exposed to phenol |
title_full |
Phospholipid turnover and phospholipase D activity in tobacco hairy roots exposed to phenol |
title_fullStr |
Phospholipid turnover and phospholipase D activity in tobacco hairy roots exposed to phenol |
title_full_unstemmed |
Phospholipid turnover and phospholipase D activity in tobacco hairy roots exposed to phenol |
title_sort |
Phospholipid turnover and phospholipase D activity in tobacco hairy roots exposed to phenol |
dc.creator.none.fl_str_mv |
Sosa Alderete, Lucas Gastón Racagni, Graciela Esther Agostini, Elizabeth Medina, María I. |
author |
Sosa Alderete, Lucas Gastón |
author_facet |
Sosa Alderete, Lucas Gastón Racagni, Graciela Esther Agostini, Elizabeth Medina, María I. |
author_role |
author |
author2 |
Racagni, Graciela Esther Agostini, Elizabeth Medina, María I. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
PHENOL PLD PHOSPHOLIPIDS SIGNAL TRANSDUCTION |
topic |
PHENOL PLD PHOSPHOLIPIDS SIGNAL TRANSDUCTION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.8 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Plants are exposed to a great variety of environmental factors, which can affect their survival. In addition, the rapid urbanization and the increased release of different pollutants, such as phenol, to the environment, produce another stressful condition to the development and growth of the plants. In this work, we studied the effects on the [32P]Piphospholipid turnover and phospholipase D (PLD) activity after phenol treatment, using tobacco hairy roots (HRs), double transgenic (DT) for two peroxidase genes (tpx1 and tpx2) and wild type (WT) ones. In both HRs, the [32P]phospholipid turnover of the most abundant phospholipids (PLs), such as phosphatidylcholine (PC), phosphatydilethanolamine (PE), phosphatydilglycerol (PG) and cardiolipin (CL) did not show any changes after phenol treatment. However, modifications in the minor PLs of both HRs were observed. Phenol treatment significantly increases the turnover of phosphatidic acid (PA) and phosphatydilinositol (PI), in WT HRs. In DT HRs, phenol produced significant increase in the turnover of PI, lisophosphatidic acid (LPA), diacylglycerolpyrophosphate (DGPP) and PA with a concomitant decrease in the phosphatidylinositol monophosphate (PIP). Moreover, phosphatidylinositol bisphosphate (PIP2) was detected, but its level did not change in presence of the pollutant. Phenol treatment significantly increased the PLD activity of both HRs. In WT HRs the increase was 100% higher than the control, whereas in DT HRs it was about to 50%. These results suggest the participation of minor PLs, mainly PA, and the PLD pathway as one source of PA production in the activation of intracellular mechanisms that might be important in the response of these plant tissues to phenol treatment.32P]Piphospholipid turnover and phospholipase D (PLD) activity after phenol treatment, using tobacco hairy roots (HRs), double transgenic (DT) for two peroxidase genes (tpx1 and tpx2) and wild type (WT) ones. In both HRs, the [32P]phospholipid turnover of the most abundant phospholipids (PLs), such as phosphatidylcholine (PC), phosphatydilethanolamine (PE), phosphatydilglycerol (PG) and cardiolipin (CL) did not show any changes after phenol treatment. However, modifications in the minor PLs of both HRs were observed. Phenol treatment significantly increases the turnover of phosphatidic acid (PA) and phosphatydilinositol (PI), in WT HRs. In DT HRs, phenol produced significant increase in the turnover of PI, lisophosphatidic acid (LPA), diacylglycerolpyrophosphate (DGPP) and PA with a concomitant decrease in the phosphatidylinositol monophosphate (PIP). Moreover, phosphatidylinositol bisphosphate (PIP2) was detected, but its level did not change in presence of the pollutant. Phenol treatment significantly increased the PLD activity of both HRs. In WT HRs the increase was 100% higher than the control, whereas in DT HRs it was about to 50%. These results suggest the participation of minor PLs, mainly PA, and the PLD pathway as one source of PA production in the activation of intracellular mechanisms that might be important in the response of these plant tissues to phenol treatment.32P]phospholipid turnover of the most abundant phospholipids (PLs), such as phosphatidylcholine (PC), phosphatydilethanolamine (PE), phosphatydilglycerol (PG) and cardiolipin (CL) did not show any changes after phenol treatment. However, modifications in the minor PLs of both HRs were observed. Phenol treatment significantly increases the turnover of phosphatidic acid (PA) and phosphatydilinositol (PI), in WT HRs. In DT HRs, phenol produced significant increase in the turnover of PI, lisophosphatidic acid (LPA), diacylglycerolpyrophosphate (DGPP) and PA with a concomitant decrease in the phosphatidylinositol monophosphate (PIP). Moreover, phosphatidylinositol bisphosphate (PIP2) was detected, but its level did not change in presence of the pollutant. Phenol treatment significantly increased the PLD activity of both HRs. In WT HRs the increase was 100% higher than the control, whereas in DT HRs it was about to 50%. These results suggest the participation of minor PLs, mainly PA, and the PLD pathway as one source of PA production in the activation of intracellular mechanisms that might be important in the response of these plant tissues to phenol treatment.2) was detected, but its level did not change in presence of the pollutant. Phenol treatment significantly increased the PLD activity of both HRs. In WT HRs the increase was 100% higher than the control, whereas in DT HRs it was about to 50%. These results suggest the participation of minor PLs, mainly PA, and the PLD pathway as one source of PA production in the activation of intracellular mechanisms that might be important in the response of these plant tissues to phenol treatment. Fil: Sosa Alderete, Lucas Gastón. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Biotecnología Ambiental y Salud - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Biotecnología Ambiental y Salud; Argentina Fil: Racagni, Graciela Esther. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales; Argentina Fil: Agostini, Elizabeth. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Biotecnología Ambiental y Salud - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Biotecnología Ambiental y Salud; Argentina Fil: Medina, María I.. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales; Argentina |
description |
Plants are exposed to a great variety of environmental factors, which can affect their survival. In addition, the rapid urbanization and the increased release of different pollutants, such as phenol, to the environment, produce another stressful condition to the development and growth of the plants. In this work, we studied the effects on the [32P]Piphospholipid turnover and phospholipase D (PLD) activity after phenol treatment, using tobacco hairy roots (HRs), double transgenic (DT) for two peroxidase genes (tpx1 and tpx2) and wild type (WT) ones. In both HRs, the [32P]phospholipid turnover of the most abundant phospholipids (PLs), such as phosphatidylcholine (PC), phosphatydilethanolamine (PE), phosphatydilglycerol (PG) and cardiolipin (CL) did not show any changes after phenol treatment. However, modifications in the minor PLs of both HRs were observed. Phenol treatment significantly increases the turnover of phosphatidic acid (PA) and phosphatydilinositol (PI), in WT HRs. In DT HRs, phenol produced significant increase in the turnover of PI, lisophosphatidic acid (LPA), diacylglycerolpyrophosphate (DGPP) and PA with a concomitant decrease in the phosphatidylinositol monophosphate (PIP). Moreover, phosphatidylinositol bisphosphate (PIP2) was detected, but its level did not change in presence of the pollutant. Phenol treatment significantly increased the PLD activity of both HRs. In WT HRs the increase was 100% higher than the control, whereas in DT HRs it was about to 50%. These results suggest the participation of minor PLs, mainly PA, and the PLD pathway as one source of PA production in the activation of intracellular mechanisms that might be important in the response of these plant tissues to phenol treatment.32P]Piphospholipid turnover and phospholipase D (PLD) activity after phenol treatment, using tobacco hairy roots (HRs), double transgenic (DT) for two peroxidase genes (tpx1 and tpx2) and wild type (WT) ones. In both HRs, the [32P]phospholipid turnover of the most abundant phospholipids (PLs), such as phosphatidylcholine (PC), phosphatydilethanolamine (PE), phosphatydilglycerol (PG) and cardiolipin (CL) did not show any changes after phenol treatment. However, modifications in the minor PLs of both HRs were observed. Phenol treatment significantly increases the turnover of phosphatidic acid (PA) and phosphatydilinositol (PI), in WT HRs. In DT HRs, phenol produced significant increase in the turnover of PI, lisophosphatidic acid (LPA), diacylglycerolpyrophosphate (DGPP) and PA with a concomitant decrease in the phosphatidylinositol monophosphate (PIP). Moreover, phosphatidylinositol bisphosphate (PIP2) was detected, but its level did not change in presence of the pollutant. Phenol treatment significantly increased the PLD activity of both HRs. In WT HRs the increase was 100% higher than the control, whereas in DT HRs it was about to 50%. These results suggest the participation of minor PLs, mainly PA, and the PLD pathway as one source of PA production in the activation of intracellular mechanisms that might be important in the response of these plant tissues to phenol treatment.32P]phospholipid turnover of the most abundant phospholipids (PLs), such as phosphatidylcholine (PC), phosphatydilethanolamine (PE), phosphatydilglycerol (PG) and cardiolipin (CL) did not show any changes after phenol treatment. However, modifications in the minor PLs of both HRs were observed. Phenol treatment significantly increases the turnover of phosphatidic acid (PA) and phosphatydilinositol (PI), in WT HRs. In DT HRs, phenol produced significant increase in the turnover of PI, lisophosphatidic acid (LPA), diacylglycerolpyrophosphate (DGPP) and PA with a concomitant decrease in the phosphatidylinositol monophosphate (PIP). Moreover, phosphatidylinositol bisphosphate (PIP2) was detected, but its level did not change in presence of the pollutant. Phenol treatment significantly increased the PLD activity of both HRs. In WT HRs the increase was 100% higher than the control, whereas in DT HRs it was about to 50%. These results suggest the participation of minor PLs, mainly PA, and the PLD pathway as one source of PA production in the activation of intracellular mechanisms that might be important in the response of these plant tissues to phenol treatment.2) was detected, but its level did not change in presence of the pollutant. Phenol treatment significantly increased the PLD activity of both HRs. In WT HRs the increase was 100% higher than the control, whereas in DT HRs it was about to 50%. These results suggest the participation of minor PLs, mainly PA, and the PLD pathway as one source of PA production in the activation of intracellular mechanisms that might be important in the response of these plant tissues to phenol treatment. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/230401 Sosa Alderete, Lucas Gastón; Racagni, Graciela Esther; Agostini, Elizabeth; Medina, María I.; Phospholipid turnover and phospholipase D activity in tobacco hairy roots exposed to phenol; Pergamon-Elsevier Science Ltd; Environmental and Experimental Botany; 77; 4-2012; 141-145 0098-8472 1873-7307 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/230401 |
identifier_str_mv |
Sosa Alderete, Lucas Gastón; Racagni, Graciela Esther; Agostini, Elizabeth; Medina, María I.; Phospholipid turnover and phospholipase D activity in tobacco hairy roots exposed to phenol; Pergamon-Elsevier Science Ltd; Environmental and Experimental Botany; 77; 4-2012; 141-145 0098-8472 1873-7307 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.envexpbot.2011.11.006 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0098847211002826 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613876300120064 |
score |
13.070432 |