A presentation by generators and relations of Nichols algebras of diagonal type and convex orders on root systems
- Autores
- Angiono, Iván Ezequiel
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We obtain a presentation by generators and relations of any Nichols algebra of diagonal type with finite root system. We prove that the defining ideal is finitely generated. The proof is based on Kharchenko's theory of PBW bases of Lyndon words. We prove that the lexicographic order on Lyndon words is convex for PBW generators and so the PBW basis is orthogonal with respect to the canonical non-degenerate form associated to the Nichols algebra.
Fil: Angiono, Iván Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
Nichols Algebras
Pointed Hopf Algebras
Quantized Enveloping Algebras - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/53098
Ver los metadatos del registro completo
id |
CONICETDig_76ee006a8ef5b343376e493bc09cbfce |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/53098 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A presentation by generators and relations of Nichols algebras of diagonal type and convex orders on root systemsAngiono, Iván EzequielNichols AlgebrasPointed Hopf AlgebrasQuantized Enveloping Algebrashttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We obtain a presentation by generators and relations of any Nichols algebra of diagonal type with finite root system. We prove that the defining ideal is finitely generated. The proof is based on Kharchenko's theory of PBW bases of Lyndon words. We prove that the lexicographic order on Lyndon words is convex for PBW generators and so the PBW basis is orthogonal with respect to the canonical non-degenerate form associated to the Nichols algebra.Fil: Angiono, Iván Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaEuropean Mathematical Society2015-10-29info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/53098Angiono, Iván Ezequiel; A presentation by generators and relations of Nichols algebras of diagonal type and convex orders on root systems; European Mathematical Society; Journal of the European Mathematical Society; 17; 10; 29-10-2015; 2643-26711435-9855CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.ems-ph.org/journals/show_abstract.php?issn=1435-9855&vol=17&iss=10&rank=7info:eu-repo/semantics/altIdentifier/doi/10.4171/JEMS/567info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:51:22Zoai:ri.conicet.gov.ar:11336/53098instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:51:22.385CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A presentation by generators and relations of Nichols algebras of diagonal type and convex orders on root systems |
title |
A presentation by generators and relations of Nichols algebras of diagonal type and convex orders on root systems |
spellingShingle |
A presentation by generators and relations of Nichols algebras of diagonal type and convex orders on root systems Angiono, Iván Ezequiel Nichols Algebras Pointed Hopf Algebras Quantized Enveloping Algebras |
title_short |
A presentation by generators and relations of Nichols algebras of diagonal type and convex orders on root systems |
title_full |
A presentation by generators and relations of Nichols algebras of diagonal type and convex orders on root systems |
title_fullStr |
A presentation by generators and relations of Nichols algebras of diagonal type and convex orders on root systems |
title_full_unstemmed |
A presentation by generators and relations of Nichols algebras of diagonal type and convex orders on root systems |
title_sort |
A presentation by generators and relations of Nichols algebras of diagonal type and convex orders on root systems |
dc.creator.none.fl_str_mv |
Angiono, Iván Ezequiel |
author |
Angiono, Iván Ezequiel |
author_facet |
Angiono, Iván Ezequiel |
author_role |
author |
dc.subject.none.fl_str_mv |
Nichols Algebras Pointed Hopf Algebras Quantized Enveloping Algebras |
topic |
Nichols Algebras Pointed Hopf Algebras Quantized Enveloping Algebras |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We obtain a presentation by generators and relations of any Nichols algebra of diagonal type with finite root system. We prove that the defining ideal is finitely generated. The proof is based on Kharchenko's theory of PBW bases of Lyndon words. We prove that the lexicographic order on Lyndon words is convex for PBW generators and so the PBW basis is orthogonal with respect to the canonical non-degenerate form associated to the Nichols algebra. Fil: Angiono, Iván Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
We obtain a presentation by generators and relations of any Nichols algebra of diagonal type with finite root system. We prove that the defining ideal is finitely generated. The proof is based on Kharchenko's theory of PBW bases of Lyndon words. We prove that the lexicographic order on Lyndon words is convex for PBW generators and so the PBW basis is orthogonal with respect to the canonical non-degenerate form associated to the Nichols algebra. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-10-29 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/53098 Angiono, Iván Ezequiel; A presentation by generators and relations of Nichols algebras of diagonal type and convex orders on root systems; European Mathematical Society; Journal of the European Mathematical Society; 17; 10; 29-10-2015; 2643-2671 1435-9855 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/53098 |
identifier_str_mv |
Angiono, Iván Ezequiel; A presentation by generators and relations of Nichols algebras of diagonal type and convex orders on root systems; European Mathematical Society; Journal of the European Mathematical Society; 17; 10; 29-10-2015; 2643-2671 1435-9855 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.ems-ph.org/journals/show_abstract.php?issn=1435-9855&vol=17&iss=10&rank=7 info:eu-repo/semantics/altIdentifier/doi/10.4171/JEMS/567 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
European Mathematical Society |
publisher.none.fl_str_mv |
European Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613579506974720 |
score |
13.070432 |