Towards an efficient liquid organic hydrogen carrier fuel cell concept

Autores
Sievi, Gabriel; Geburtig, Denise; Skeledzic, Tanja; Bösmann, Andreas; Preuster, Patrick; Brummel, Olaf; Waidhas, Fabian; Montero, María de Los Angeles; Khanipour, Peyman; Katsounaros, Ioannis; Libuda, Jörg; Mayrhofer, Karl J. J.; Wasserscheid, Peter
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The high temperature required for hydrogen release from Liquid Organic Hydrogen Carrier (LOHC) systems has been considered in the past as the main drawback of this otherwise highly attractive and fully infrastructure-compatible form of chemical hydrogen storage. According to the state-of-the art, the production of electrical energy from LOHC-bound hydrogen, e.g. from perhydro-dibenzyltoluene (H18DBT), requires provision of the dehydrogenation enthalpy (e.g. 65 kJ mol-1(H2) for H18-DBT) at a temperature level of 300 °C followed by purification of the released hydrogen for subsequent fuel cell operation. Here, we demonstrate that a combination of a heterogeneously catalysed transfer hydrogenation from H18-DBT to acetone and fuel cell operation with the resulting 2-propanol as a fuel, allows for an electrification of LOHC-bound hydrogen in high efficiency (> 50 %) and at surprisingly mild conditions (temperatures below 200 °C). Most importantly, our proposed new sequence does not require an external heat input as the transfer hydrogenation from H18-DBT to acetone is almost thermoneutral. In the PEMFC operation with 2-propanol, the endothermal proton release at the anode is compensated by the exothermic formation of water. Ideally the proposed sequence does not form and consume molecular H2 at any point which adds a very appealing safety feature to this way of producing electricity from LOHC-bound hydrogen, e.g. for applications on mobile platforms.
Fil: Sievi, Gabriel. Forschungszentrum Jülich; Alemania
Fil: Geburtig, Denise. Universitat Erlangen-Nuremberg; Alemania
Fil: Skeledzic, Tanja. Forschungszentrum Jülich; Alemania
Fil: Bösmann, Andreas. Universitat Erlangen-Nuremberg; Alemania
Fil: Preuster, Patrick. Forschungszentrum Jülich; Alemania
Fil: Brummel, Olaf. Universitat Erlangen-Nuremberg; Alemania
Fil: Waidhas, Fabian. Universitat Erlangen-Nuremberg; Alemania
Fil: Montero, María de Los Angeles. Universidad Nacional del Litoral. Instituto de Química Aplicada del Litoral. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Química Aplicada del Litoral.; Argentina
Fil: Khanipour, Peyman. Forschungszentrum Jülich; Alemania
Fil: Katsounaros, Ioannis. Forschungszentrum Jülich; Alemania
Fil: Libuda, Jörg. Universitat Erlangen-Nuremberg; Alemania
Fil: Mayrhofer, Karl J. J.. Forschungszentrum Jülich; Andorra
Fil: Wasserscheid, Peter. Universitat Erlangen-Nuremberg; Alemania
Materia
HYDROGEN
LIQUID ORGANIC HYDROGEN CARRIER
FUEL CELL
TRANSFER HYDROGENATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/109995

id CONICETDig_76cee6de33fa3c626b24e9d9a31a97ec
oai_identifier_str oai:ri.conicet.gov.ar:11336/109995
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Towards an efficient liquid organic hydrogen carrier fuel cell conceptSievi, GabrielGeburtig, DeniseSkeledzic, TanjaBösmann, AndreasPreuster, PatrickBrummel, OlafWaidhas, FabianMontero, María de Los AngelesKhanipour, PeymanKatsounaros, IoannisLibuda, JörgMayrhofer, Karl J. J.Wasserscheid, PeterHYDROGENLIQUID ORGANIC HYDROGEN CARRIERFUEL CELLTRANSFER HYDROGENATIONhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The high temperature required for hydrogen release from Liquid Organic Hydrogen Carrier (LOHC) systems has been considered in the past as the main drawback of this otherwise highly attractive and fully infrastructure-compatible form of chemical hydrogen storage. According to the state-of-the art, the production of electrical energy from LOHC-bound hydrogen, e.g. from perhydro-dibenzyltoluene (H18DBT), requires provision of the dehydrogenation enthalpy (e.g. 65 kJ mol-1(H2) for H18-DBT) at a temperature level of 300 °C followed by purification of the released hydrogen for subsequent fuel cell operation. Here, we demonstrate that a combination of a heterogeneously catalysed transfer hydrogenation from H18-DBT to acetone and fuel cell operation with the resulting 2-propanol as a fuel, allows for an electrification of LOHC-bound hydrogen in high efficiency (> 50 %) and at surprisingly mild conditions (temperatures below 200 °C). Most importantly, our proposed new sequence does not require an external heat input as the transfer hydrogenation from H18-DBT to acetone is almost thermoneutral. In the PEMFC operation with 2-propanol, the endothermal proton release at the anode is compensated by the exothermic formation of water. Ideally the proposed sequence does not form and consume molecular H2 at any point which adds a very appealing safety feature to this way of producing electricity from LOHC-bound hydrogen, e.g. for applications on mobile platforms.Fil: Sievi, Gabriel. Forschungszentrum Jülich; AlemaniaFil: Geburtig, Denise. Universitat Erlangen-Nuremberg; AlemaniaFil: Skeledzic, Tanja. Forschungszentrum Jülich; AlemaniaFil: Bösmann, Andreas. Universitat Erlangen-Nuremberg; AlemaniaFil: Preuster, Patrick. Forschungszentrum Jülich; AlemaniaFil: Brummel, Olaf. Universitat Erlangen-Nuremberg; AlemaniaFil: Waidhas, Fabian. Universitat Erlangen-Nuremberg; AlemaniaFil: Montero, María de Los Angeles. Universidad Nacional del Litoral. Instituto de Química Aplicada del Litoral. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Química Aplicada del Litoral.; ArgentinaFil: Khanipour, Peyman. Forschungszentrum Jülich; AlemaniaFil: Katsounaros, Ioannis. Forschungszentrum Jülich; AlemaniaFil: Libuda, Jörg. Universitat Erlangen-Nuremberg; AlemaniaFil: Mayrhofer, Karl J. J.. Forschungszentrum Jülich; AndorraFil: Wasserscheid, Peter. Universitat Erlangen-Nuremberg; AlemaniaRoyal Society of Chemistry2019-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/109995Sievi, Gabriel; Geburtig, Denise; Skeledzic, Tanja; Bösmann, Andreas; Preuster, Patrick; et al.; Towards an efficient liquid organic hydrogen carrier fuel cell concept; Royal Society of Chemistry; Energy & Environmental Science; 175; 5-20191754-5692CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://xlink.rsc.org/?DOI=C9EE01324Einfo:eu-repo/semantics/altIdentifier/doi/10.1039/C9EE01324Einfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:25:36Zoai:ri.conicet.gov.ar:11336/109995instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:25:36.335CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Towards an efficient liquid organic hydrogen carrier fuel cell concept
title Towards an efficient liquid organic hydrogen carrier fuel cell concept
spellingShingle Towards an efficient liquid organic hydrogen carrier fuel cell concept
Sievi, Gabriel
HYDROGEN
LIQUID ORGANIC HYDROGEN CARRIER
FUEL CELL
TRANSFER HYDROGENATION
title_short Towards an efficient liquid organic hydrogen carrier fuel cell concept
title_full Towards an efficient liquid organic hydrogen carrier fuel cell concept
title_fullStr Towards an efficient liquid organic hydrogen carrier fuel cell concept
title_full_unstemmed Towards an efficient liquid organic hydrogen carrier fuel cell concept
title_sort Towards an efficient liquid organic hydrogen carrier fuel cell concept
dc.creator.none.fl_str_mv Sievi, Gabriel
Geburtig, Denise
Skeledzic, Tanja
Bösmann, Andreas
Preuster, Patrick
Brummel, Olaf
Waidhas, Fabian
Montero, María de Los Angeles
Khanipour, Peyman
Katsounaros, Ioannis
Libuda, Jörg
Mayrhofer, Karl J. J.
Wasserscheid, Peter
author Sievi, Gabriel
author_facet Sievi, Gabriel
Geburtig, Denise
Skeledzic, Tanja
Bösmann, Andreas
Preuster, Patrick
Brummel, Olaf
Waidhas, Fabian
Montero, María de Los Angeles
Khanipour, Peyman
Katsounaros, Ioannis
Libuda, Jörg
Mayrhofer, Karl J. J.
Wasserscheid, Peter
author_role author
author2 Geburtig, Denise
Skeledzic, Tanja
Bösmann, Andreas
Preuster, Patrick
Brummel, Olaf
Waidhas, Fabian
Montero, María de Los Angeles
Khanipour, Peyman
Katsounaros, Ioannis
Libuda, Jörg
Mayrhofer, Karl J. J.
Wasserscheid, Peter
author2_role author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv HYDROGEN
LIQUID ORGANIC HYDROGEN CARRIER
FUEL CELL
TRANSFER HYDROGENATION
topic HYDROGEN
LIQUID ORGANIC HYDROGEN CARRIER
FUEL CELL
TRANSFER HYDROGENATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The high temperature required for hydrogen release from Liquid Organic Hydrogen Carrier (LOHC) systems has been considered in the past as the main drawback of this otherwise highly attractive and fully infrastructure-compatible form of chemical hydrogen storage. According to the state-of-the art, the production of electrical energy from LOHC-bound hydrogen, e.g. from perhydro-dibenzyltoluene (H18DBT), requires provision of the dehydrogenation enthalpy (e.g. 65 kJ mol-1(H2) for H18-DBT) at a temperature level of 300 °C followed by purification of the released hydrogen for subsequent fuel cell operation. Here, we demonstrate that a combination of a heterogeneously catalysed transfer hydrogenation from H18-DBT to acetone and fuel cell operation with the resulting 2-propanol as a fuel, allows for an electrification of LOHC-bound hydrogen in high efficiency (> 50 %) and at surprisingly mild conditions (temperatures below 200 °C). Most importantly, our proposed new sequence does not require an external heat input as the transfer hydrogenation from H18-DBT to acetone is almost thermoneutral. In the PEMFC operation with 2-propanol, the endothermal proton release at the anode is compensated by the exothermic formation of water. Ideally the proposed sequence does not form and consume molecular H2 at any point which adds a very appealing safety feature to this way of producing electricity from LOHC-bound hydrogen, e.g. for applications on mobile platforms.
Fil: Sievi, Gabriel. Forschungszentrum Jülich; Alemania
Fil: Geburtig, Denise. Universitat Erlangen-Nuremberg; Alemania
Fil: Skeledzic, Tanja. Forschungszentrum Jülich; Alemania
Fil: Bösmann, Andreas. Universitat Erlangen-Nuremberg; Alemania
Fil: Preuster, Patrick. Forschungszentrum Jülich; Alemania
Fil: Brummel, Olaf. Universitat Erlangen-Nuremberg; Alemania
Fil: Waidhas, Fabian. Universitat Erlangen-Nuremberg; Alemania
Fil: Montero, María de Los Angeles. Universidad Nacional del Litoral. Instituto de Química Aplicada del Litoral. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Química Aplicada del Litoral.; Argentina
Fil: Khanipour, Peyman. Forschungszentrum Jülich; Alemania
Fil: Katsounaros, Ioannis. Forschungszentrum Jülich; Alemania
Fil: Libuda, Jörg. Universitat Erlangen-Nuremberg; Alemania
Fil: Mayrhofer, Karl J. J.. Forschungszentrum Jülich; Andorra
Fil: Wasserscheid, Peter. Universitat Erlangen-Nuremberg; Alemania
description The high temperature required for hydrogen release from Liquid Organic Hydrogen Carrier (LOHC) systems has been considered in the past as the main drawback of this otherwise highly attractive and fully infrastructure-compatible form of chemical hydrogen storage. According to the state-of-the art, the production of electrical energy from LOHC-bound hydrogen, e.g. from perhydro-dibenzyltoluene (H18DBT), requires provision of the dehydrogenation enthalpy (e.g. 65 kJ mol-1(H2) for H18-DBT) at a temperature level of 300 °C followed by purification of the released hydrogen for subsequent fuel cell operation. Here, we demonstrate that a combination of a heterogeneously catalysed transfer hydrogenation from H18-DBT to acetone and fuel cell operation with the resulting 2-propanol as a fuel, allows for an electrification of LOHC-bound hydrogen in high efficiency (> 50 %) and at surprisingly mild conditions (temperatures below 200 °C). Most importantly, our proposed new sequence does not require an external heat input as the transfer hydrogenation from H18-DBT to acetone is almost thermoneutral. In the PEMFC operation with 2-propanol, the endothermal proton release at the anode is compensated by the exothermic formation of water. Ideally the proposed sequence does not form and consume molecular H2 at any point which adds a very appealing safety feature to this way of producing electricity from LOHC-bound hydrogen, e.g. for applications on mobile platforms.
publishDate 2019
dc.date.none.fl_str_mv 2019-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/109995
Sievi, Gabriel; Geburtig, Denise; Skeledzic, Tanja; Bösmann, Andreas; Preuster, Patrick; et al.; Towards an efficient liquid organic hydrogen carrier fuel cell concept; Royal Society of Chemistry; Energy & Environmental Science; 175; 5-2019
1754-5692
CONICET Digital
CONICET
url http://hdl.handle.net/11336/109995
identifier_str_mv Sievi, Gabriel; Geburtig, Denise; Skeledzic, Tanja; Bösmann, Andreas; Preuster, Patrick; et al.; Towards an efficient liquid organic hydrogen carrier fuel cell concept; Royal Society of Chemistry; Energy & Environmental Science; 175; 5-2019
1754-5692
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://xlink.rsc.org/?DOI=C9EE01324E
info:eu-repo/semantics/altIdentifier/doi/10.1039/C9EE01324E
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083400323039232
score 13.22299