Influence of Oxygen Carrier on the Autothermicity of a Chemical- Looping Reforming Process for Hydrogen Production
- Autores
- López van der Horst, Juliana; Volpe Giangiordano, María Florencia; Suárez, Felipe; Pérez, Federico Martín; Gatti, Martín Nicolás; Santori, Gerardo Fabián; Pompeo, Francisco
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The chemical-looping reforming (CLR) of methane for hydrogen production employs a solid oxygen carrier (OC) and combines endothermic and exothermic stages, allowing for potential autothermal operation. This study conducted a thermodynamic analysis using Gibbs free energy minimization and energy balances to assess the behavior of WO3, MnWO4, and NiWO4 as OCs in the CLR process. The effects of CH4:OC ratios and reactor temperatures on equilibrium composition and the energy performance were examined. The results demonstrated that elevated reduction temperatures promote OC conversion and the formation of more reduced solid products. Molar ratios above stoichiometric prevent carbon formation, whereas stoichiometric ratios result in higher H2 yield, achieving 98% at 1000 ◦C. However, these conditions do not support autothermal operation, which requires CH4:OC molar ratios above stoichiometric. Additionally, lower oxidation temperatures are preferred regardless of the OC, due to the lower heat needed to preheat the air, which has a greater effect on the net heat. For the reduction temperature, its effect depends on the type of OC analyzed. The maximum H2 yield obtained under autothermal operation was 88% for the three OCs, at 875 ◦C for MnWO4 and 775 ◦C for both WO3 and NiWO4.
Centro de Investigación y Desarrollo en Ciencias Aplicadas
Facultad de Ingeniería - Materia
-
Química
chemical-looping reforming
oxygen carrier
hydrogen
thermodynamics
autothermal - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/181868
Ver los metadatos del registro completo
id |
SEDICI_132e992fd0c09a06e6c94001e44d6d4e |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/181868 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Influence of Oxygen Carrier on the Autothermicity of a Chemical- Looping Reforming Process for Hydrogen ProductionLópez van der Horst, JulianaVolpe Giangiordano, María FlorenciaSuárez, FelipePérez, Federico MartínGatti, Martín NicolásSantori, Gerardo FabiánPompeo, FranciscoQuímicachemical-looping reformingoxygen carrierhydrogenthermodynamicsautothermalThe chemical-looping reforming (CLR) of methane for hydrogen production employs a solid oxygen carrier (OC) and combines endothermic and exothermic stages, allowing for potential autothermal operation. This study conducted a thermodynamic analysis using Gibbs free energy minimization and energy balances to assess the behavior of WO3, MnWO4, and NiWO4 as OCs in the CLR process. The effects of CH4:OC ratios and reactor temperatures on equilibrium composition and the energy performance were examined. The results demonstrated that elevated reduction temperatures promote OC conversion and the formation of more reduced solid products. Molar ratios above stoichiometric prevent carbon formation, whereas stoichiometric ratios result in higher H2 yield, achieving 98% at 1000 ◦C. However, these conditions do not support autothermal operation, which requires CH4:OC molar ratios above stoichiometric. Additionally, lower oxidation temperatures are preferred regardless of the OC, due to the lower heat needed to preheat the air, which has a greater effect on the net heat. For the reduction temperature, its effect depends on the type of OC analyzed. The maximum H2 yield obtained under autothermal operation was 88% for the three OCs, at 875 ◦C for MnWO4 and 775 ◦C for both WO3 and NiWO4.Centro de Investigación y Desarrollo en Ciencias AplicadasFacultad de Ingeniería2025-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/181868enginfo:eu-repo/semantics/altIdentifier/issn/2624-781Xinfo:eu-repo/semantics/altIdentifier/doi/10.3390/reactions6010005info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:41:25Zoai:sedici.unlp.edu.ar:10915/181868Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:41:26.18SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Influence of Oxygen Carrier on the Autothermicity of a Chemical- Looping Reforming Process for Hydrogen Production |
title |
Influence of Oxygen Carrier on the Autothermicity of a Chemical- Looping Reforming Process for Hydrogen Production |
spellingShingle |
Influence of Oxygen Carrier on the Autothermicity of a Chemical- Looping Reforming Process for Hydrogen Production López van der Horst, Juliana Química chemical-looping reforming oxygen carrier hydrogen thermodynamics autothermal |
title_short |
Influence of Oxygen Carrier on the Autothermicity of a Chemical- Looping Reforming Process for Hydrogen Production |
title_full |
Influence of Oxygen Carrier on the Autothermicity of a Chemical- Looping Reforming Process for Hydrogen Production |
title_fullStr |
Influence of Oxygen Carrier on the Autothermicity of a Chemical- Looping Reforming Process for Hydrogen Production |
title_full_unstemmed |
Influence of Oxygen Carrier on the Autothermicity of a Chemical- Looping Reforming Process for Hydrogen Production |
title_sort |
Influence of Oxygen Carrier on the Autothermicity of a Chemical- Looping Reforming Process for Hydrogen Production |
dc.creator.none.fl_str_mv |
López van der Horst, Juliana Volpe Giangiordano, María Florencia Suárez, Felipe Pérez, Federico Martín Gatti, Martín Nicolás Santori, Gerardo Fabián Pompeo, Francisco |
author |
López van der Horst, Juliana |
author_facet |
López van der Horst, Juliana Volpe Giangiordano, María Florencia Suárez, Felipe Pérez, Federico Martín Gatti, Martín Nicolás Santori, Gerardo Fabián Pompeo, Francisco |
author_role |
author |
author2 |
Volpe Giangiordano, María Florencia Suárez, Felipe Pérez, Federico Martín Gatti, Martín Nicolás Santori, Gerardo Fabián Pompeo, Francisco |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Química chemical-looping reforming oxygen carrier hydrogen thermodynamics autothermal |
topic |
Química chemical-looping reforming oxygen carrier hydrogen thermodynamics autothermal |
dc.description.none.fl_txt_mv |
The chemical-looping reforming (CLR) of methane for hydrogen production employs a solid oxygen carrier (OC) and combines endothermic and exothermic stages, allowing for potential autothermal operation. This study conducted a thermodynamic analysis using Gibbs free energy minimization and energy balances to assess the behavior of WO3, MnWO4, and NiWO4 as OCs in the CLR process. The effects of CH4:OC ratios and reactor temperatures on equilibrium composition and the energy performance were examined. The results demonstrated that elevated reduction temperatures promote OC conversion and the formation of more reduced solid products. Molar ratios above stoichiometric prevent carbon formation, whereas stoichiometric ratios result in higher H2 yield, achieving 98% at 1000 ◦C. However, these conditions do not support autothermal operation, which requires CH4:OC molar ratios above stoichiometric. Additionally, lower oxidation temperatures are preferred regardless of the OC, due to the lower heat needed to preheat the air, which has a greater effect on the net heat. For the reduction temperature, its effect depends on the type of OC analyzed. The maximum H2 yield obtained under autothermal operation was 88% for the three OCs, at 875 ◦C for MnWO4 and 775 ◦C for both WO3 and NiWO4. Centro de Investigación y Desarrollo en Ciencias Aplicadas Facultad de Ingeniería |
description |
The chemical-looping reforming (CLR) of methane for hydrogen production employs a solid oxygen carrier (OC) and combines endothermic and exothermic stages, allowing for potential autothermal operation. This study conducted a thermodynamic analysis using Gibbs free energy minimization and energy balances to assess the behavior of WO3, MnWO4, and NiWO4 as OCs in the CLR process. The effects of CH4:OC ratios and reactor temperatures on equilibrium composition and the energy performance were examined. The results demonstrated that elevated reduction temperatures promote OC conversion and the formation of more reduced solid products. Molar ratios above stoichiometric prevent carbon formation, whereas stoichiometric ratios result in higher H2 yield, achieving 98% at 1000 ◦C. However, these conditions do not support autothermal operation, which requires CH4:OC molar ratios above stoichiometric. Additionally, lower oxidation temperatures are preferred regardless of the OC, due to the lower heat needed to preheat the air, which has a greater effect on the net heat. For the reduction temperature, its effect depends on the type of OC analyzed. The maximum H2 yield obtained under autothermal operation was 88% for the three OCs, at 875 ◦C for MnWO4 and 775 ◦C for both WO3 and NiWO4. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/181868 |
url |
http://sedici.unlp.edu.ar/handle/10915/181868 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/2624-781X info:eu-repo/semantics/altIdentifier/doi/10.3390/reactions6010005 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846064424177106944 |
score |
13.22299 |