The LSST-DESC 3x2pt Tomography Optimization Challenge

Autores
Zuntz, Joe; Lanusse, Francois; Malz, Alex I.; Wright, Angus H.; Slosar, Anze; Abolfathi, Bela; Alonso, David; Bault, Abby; Bom, Clecio R.; Brescia, Massimo; Broussard, Adam; Campagne, Jean Eric; Cavuoti, Stefano; Cypriano, Eduardo S.; Fraga, Bernardo M. O.; Gawiser, Eric; Gonzalez, Elizabeth Johana; Green, Dylan; Hatfield, Peter; Iyer, Kartheik; Kirkby, David; Nicola, Andrina; Nourbakhsh, Erfan; Park, Andy; Teixeira, Gabriel; Heitmann, Katrin; Kovacs, Eve; Mao, Yao Yuan
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper presents the results of the Rubin Observatory Dark Energy Science Collaboration (DESC) 3x2pt tomography challenge, which served as a first step toward optimizing the tomographic binning strategy for the main DESC analysis. The task of choosing an optimal tomographic binning scheme for a photometric survey is made particularly delicate in the context of a metacalibrated lensing catalogue, as only the photometry from the bands included in the metacalibration process (usually riz and potentially g) can be used in sample definition. The goal of the challenge was to collect and compare bin assignment strategies under various metrics of a standard 3x2pt cosmology analysis in a highly idealized setting to establish a baseline for realistically complex follow-up studies; in this preliminary study, we used two sets of cosmological simulations of galaxy redshifts and photometry under a simple noise model neglecting photometric outliers and variation in observing conditions, and contributed algorithms were provided with a representative and complete training set. We review and evaluate the entries to the challenge, finding that even from this limited photometry information, multiple algorithms can separate tomographic bins reasonably well, reaching figures-of-merit scores close to the attainable maximum. We further find that adding the g band to riz photometry improves metric performance by ~15% and that the optimal bin assignment strategy depends strongly on the science case: which figure-of-merit is to be optimized, and which observables (clustering, lensing, or both) are included.
Fil: Zuntz, Joe. University of Hawaii at Manoa; Estados Unidos
Fil: Lanusse, Francois. Université Paris Sud; Francia
Fil: Malz, Alex I.. Ruhr Universität Bochum; Alemania
Fil: Wright, Angus H.. Ruhr Universität Bochum; Alemania
Fil: Slosar, Anze. Brookhaven National Laboratory; Estados Unidos
Fil: Abolfathi, Bela. University Of California At Los Angeles. Department Of Physics And Astronomy.; Estados Unidos
Fil: Alonso, David. University of Oxford; Reino Unido
Fil: Bault, Abby. University Of California At Los Angeles. Department Of Physics And Astronomy.; Estados Unidos
Fil: Bom, Clecio R.. Centro Brasileiro de Pesquisas Físicas; Brasil
Fil: Brescia, Massimo. Istituto Nazionale di Astrofisica; Italia
Fil: Broussard, Adam. Texas A&M University; Estados Unidos
Fil: Campagne, Jean Eric. Université Paris Sud; Francia
Fil: Cavuoti, Stefano. Istituto Nazionale di Astrofisica; Italia
Fil: Cypriano, Eduardo S.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; Brasil
Fil: Fraga, Bernardo M. O.. Centro Brasileiro de Pesquisas Físicas; Brasil
Fil: Gawiser, Eric. Rutgers University; Estados Unidos
Fil: Gonzalez, Elizabeth Johana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; Argentina
Fil: Green, Dylan. University Of California At Los Angeles. Department Of Physics And Astronomy.; Estados Unidos
Fil: Hatfield, Peter. University of Oxford; Reino Unido
Fil: Iyer, Kartheik. Dunlap Institute for Astronomy & Astrophysics; Canadá
Fil: Kirkby, David. University Of California At Los Angeles. Department Of Physics And Astronomy.; Estados Unidos
Fil: Nicola, Andrina. University of Princeton; Estados Unidos
Fil: Nourbakhsh, Erfan. University Of California At Los Angeles. Department Of Physics And Astronomy.; Estados Unidos
Fil: Park, Andy. University Of California At Los Angeles. Department Of Physics And Astronomy.; Estados Unidos
Fil: Teixeira, Gabriel. Centro Brasileiro de Pesquisas Físicas; Brasil
Fil: Heitmann, Katrin. Argonne National Laboratory; Estados Unidos
Fil: Kovacs, Eve. Argonne National Laboratory; Estados Unidos
Fil: Mao, Yao Yuan. University of Utah; Estados Unidos
Materia
TOMOGRAPHY
CHALLENGE
LENSING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/170946

id CONICETDig_76a29fefa163f5e7f54d45d1ca682f5f
oai_identifier_str oai:ri.conicet.gov.ar:11336/170946
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The LSST-DESC 3x2pt Tomography Optimization ChallengeZuntz, JoeLanusse, FrancoisMalz, Alex I.Wright, Angus H.Slosar, AnzeAbolfathi, BelaAlonso, DavidBault, AbbyBom, Clecio R.Brescia, MassimoBroussard, AdamCampagne, Jean EricCavuoti, StefanoCypriano, Eduardo S.Fraga, Bernardo M. O.Gawiser, EricGonzalez, Elizabeth JohanaGreen, DylanHatfield, PeterIyer, KartheikKirkby, DavidNicola, AndrinaNourbakhsh, ErfanPark, AndyTeixeira, GabrielHeitmann, KatrinKovacs, EveMao, Yao YuanTOMOGRAPHYCHALLENGELENSINGhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1This paper presents the results of the Rubin Observatory Dark Energy Science Collaboration (DESC) 3x2pt tomography challenge, which served as a first step toward optimizing the tomographic binning strategy for the main DESC analysis. The task of choosing an optimal tomographic binning scheme for a photometric survey is made particularly delicate in the context of a metacalibrated lensing catalogue, as only the photometry from the bands included in the metacalibration process (usually riz and potentially g) can be used in sample definition. The goal of the challenge was to collect and compare bin assignment strategies under various metrics of a standard 3x2pt cosmology analysis in a highly idealized setting to establish a baseline for realistically complex follow-up studies; in this preliminary study, we used two sets of cosmological simulations of galaxy redshifts and photometry under a simple noise model neglecting photometric outliers and variation in observing conditions, and contributed algorithms were provided with a representative and complete training set. We review and evaluate the entries to the challenge, finding that even from this limited photometry information, multiple algorithms can separate tomographic bins reasonably well, reaching figures-of-merit scores close to the attainable maximum. We further find that adding the g band to riz photometry improves metric performance by ~15% and that the optimal bin assignment strategy depends strongly on the science case: which figure-of-merit is to be optimized, and which observables (clustering, lensing, or both) are included.Fil: Zuntz, Joe. University of Hawaii at Manoa; Estados UnidosFil: Lanusse, Francois. Université Paris Sud; FranciaFil: Malz, Alex I.. Ruhr Universität Bochum; AlemaniaFil: Wright, Angus H.. Ruhr Universität Bochum; AlemaniaFil: Slosar, Anze. Brookhaven National Laboratory; Estados UnidosFil: Abolfathi, Bela. University Of California At Los Angeles. Department Of Physics And Astronomy.; Estados UnidosFil: Alonso, David. University of Oxford; Reino UnidoFil: Bault, Abby. University Of California At Los Angeles. Department Of Physics And Astronomy.; Estados UnidosFil: Bom, Clecio R.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Brescia, Massimo. Istituto Nazionale di Astrofisica; ItaliaFil: Broussard, Adam. Texas A&M University; Estados UnidosFil: Campagne, Jean Eric. Université Paris Sud; FranciaFil: Cavuoti, Stefano. Istituto Nazionale di Astrofisica; ItaliaFil: Cypriano, Eduardo S.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Fraga, Bernardo M. O.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Gawiser, Eric. Rutgers University; Estados UnidosFil: Gonzalez, Elizabeth Johana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; ArgentinaFil: Green, Dylan. University Of California At Los Angeles. Department Of Physics And Astronomy.; Estados UnidosFil: Hatfield, Peter. University of Oxford; Reino UnidoFil: Iyer, Kartheik. Dunlap Institute for Astronomy & Astrophysics; CanadáFil: Kirkby, David. University Of California At Los Angeles. Department Of Physics And Astronomy.; Estados UnidosFil: Nicola, Andrina. University of Princeton; Estados UnidosFil: Nourbakhsh, Erfan. University Of California At Los Angeles. Department Of Physics And Astronomy.; Estados UnidosFil: Park, Andy. University Of California At Los Angeles. Department Of Physics And Astronomy.; Estados UnidosFil: Teixeira, Gabriel. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Heitmann, Katrin. Argonne National Laboratory; Estados UnidosFil: Kovacs, Eve. Argonne National Laboratory; Estados UnidosFil: Mao, Yao Yuan. University of Utah; Estados UnidosMaynooth Academic Publishing2021-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/170946Zuntz, Joe; Lanusse, Francois; Malz, Alex I.; Wright, Angus H.; Slosar, Anze; et al.; The LSST-DESC 3x2pt Tomography Optimization Challenge; Maynooth Academic Publishing; The Open Journal of Astrophysics; 4; 13; 10-2021; 1-262565-6120CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.21105/astro.2108.13418info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2108.13418v2info:eu-repo/semantics/altIdentifier/url/https://astro.theoj.org/article/29530-the-lsst-desc-3x2pt-tomography-optimization-challengeinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:57:42Zoai:ri.conicet.gov.ar:11336/170946instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:57:42.705CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The LSST-DESC 3x2pt Tomography Optimization Challenge
title The LSST-DESC 3x2pt Tomography Optimization Challenge
spellingShingle The LSST-DESC 3x2pt Tomography Optimization Challenge
Zuntz, Joe
TOMOGRAPHY
CHALLENGE
LENSING
title_short The LSST-DESC 3x2pt Tomography Optimization Challenge
title_full The LSST-DESC 3x2pt Tomography Optimization Challenge
title_fullStr The LSST-DESC 3x2pt Tomography Optimization Challenge
title_full_unstemmed The LSST-DESC 3x2pt Tomography Optimization Challenge
title_sort The LSST-DESC 3x2pt Tomography Optimization Challenge
dc.creator.none.fl_str_mv Zuntz, Joe
Lanusse, Francois
Malz, Alex I.
Wright, Angus H.
Slosar, Anze
Abolfathi, Bela
Alonso, David
Bault, Abby
Bom, Clecio R.
Brescia, Massimo
Broussard, Adam
Campagne, Jean Eric
Cavuoti, Stefano
Cypriano, Eduardo S.
Fraga, Bernardo M. O.
Gawiser, Eric
Gonzalez, Elizabeth Johana
Green, Dylan
Hatfield, Peter
Iyer, Kartheik
Kirkby, David
Nicola, Andrina
Nourbakhsh, Erfan
Park, Andy
Teixeira, Gabriel
Heitmann, Katrin
Kovacs, Eve
Mao, Yao Yuan
author Zuntz, Joe
author_facet Zuntz, Joe
Lanusse, Francois
Malz, Alex I.
Wright, Angus H.
Slosar, Anze
Abolfathi, Bela
Alonso, David
Bault, Abby
Bom, Clecio R.
Brescia, Massimo
Broussard, Adam
Campagne, Jean Eric
Cavuoti, Stefano
Cypriano, Eduardo S.
Fraga, Bernardo M. O.
Gawiser, Eric
Gonzalez, Elizabeth Johana
Green, Dylan
Hatfield, Peter
Iyer, Kartheik
Kirkby, David
Nicola, Andrina
Nourbakhsh, Erfan
Park, Andy
Teixeira, Gabriel
Heitmann, Katrin
Kovacs, Eve
Mao, Yao Yuan
author_role author
author2 Lanusse, Francois
Malz, Alex I.
Wright, Angus H.
Slosar, Anze
Abolfathi, Bela
Alonso, David
Bault, Abby
Bom, Clecio R.
Brescia, Massimo
Broussard, Adam
Campagne, Jean Eric
Cavuoti, Stefano
Cypriano, Eduardo S.
Fraga, Bernardo M. O.
Gawiser, Eric
Gonzalez, Elizabeth Johana
Green, Dylan
Hatfield, Peter
Iyer, Kartheik
Kirkby, David
Nicola, Andrina
Nourbakhsh, Erfan
Park, Andy
Teixeira, Gabriel
Heitmann, Katrin
Kovacs, Eve
Mao, Yao Yuan
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv TOMOGRAPHY
CHALLENGE
LENSING
topic TOMOGRAPHY
CHALLENGE
LENSING
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv This paper presents the results of the Rubin Observatory Dark Energy Science Collaboration (DESC) 3x2pt tomography challenge, which served as a first step toward optimizing the tomographic binning strategy for the main DESC analysis. The task of choosing an optimal tomographic binning scheme for a photometric survey is made particularly delicate in the context of a metacalibrated lensing catalogue, as only the photometry from the bands included in the metacalibration process (usually riz and potentially g) can be used in sample definition. The goal of the challenge was to collect and compare bin assignment strategies under various metrics of a standard 3x2pt cosmology analysis in a highly idealized setting to establish a baseline for realistically complex follow-up studies; in this preliminary study, we used two sets of cosmological simulations of galaxy redshifts and photometry under a simple noise model neglecting photometric outliers and variation in observing conditions, and contributed algorithms were provided with a representative and complete training set. We review and evaluate the entries to the challenge, finding that even from this limited photometry information, multiple algorithms can separate tomographic bins reasonably well, reaching figures-of-merit scores close to the attainable maximum. We further find that adding the g band to riz photometry improves metric performance by ~15% and that the optimal bin assignment strategy depends strongly on the science case: which figure-of-merit is to be optimized, and which observables (clustering, lensing, or both) are included.
Fil: Zuntz, Joe. University of Hawaii at Manoa; Estados Unidos
Fil: Lanusse, Francois. Université Paris Sud; Francia
Fil: Malz, Alex I.. Ruhr Universität Bochum; Alemania
Fil: Wright, Angus H.. Ruhr Universität Bochum; Alemania
Fil: Slosar, Anze. Brookhaven National Laboratory; Estados Unidos
Fil: Abolfathi, Bela. University Of California At Los Angeles. Department Of Physics And Astronomy.; Estados Unidos
Fil: Alonso, David. University of Oxford; Reino Unido
Fil: Bault, Abby. University Of California At Los Angeles. Department Of Physics And Astronomy.; Estados Unidos
Fil: Bom, Clecio R.. Centro Brasileiro de Pesquisas Físicas; Brasil
Fil: Brescia, Massimo. Istituto Nazionale di Astrofisica; Italia
Fil: Broussard, Adam. Texas A&M University; Estados Unidos
Fil: Campagne, Jean Eric. Université Paris Sud; Francia
Fil: Cavuoti, Stefano. Istituto Nazionale di Astrofisica; Italia
Fil: Cypriano, Eduardo S.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; Brasil
Fil: Fraga, Bernardo M. O.. Centro Brasileiro de Pesquisas Físicas; Brasil
Fil: Gawiser, Eric. Rutgers University; Estados Unidos
Fil: Gonzalez, Elizabeth Johana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; Argentina
Fil: Green, Dylan. University Of California At Los Angeles. Department Of Physics And Astronomy.; Estados Unidos
Fil: Hatfield, Peter. University of Oxford; Reino Unido
Fil: Iyer, Kartheik. Dunlap Institute for Astronomy & Astrophysics; Canadá
Fil: Kirkby, David. University Of California At Los Angeles. Department Of Physics And Astronomy.; Estados Unidos
Fil: Nicola, Andrina. University of Princeton; Estados Unidos
Fil: Nourbakhsh, Erfan. University Of California At Los Angeles. Department Of Physics And Astronomy.; Estados Unidos
Fil: Park, Andy. University Of California At Los Angeles. Department Of Physics And Astronomy.; Estados Unidos
Fil: Teixeira, Gabriel. Centro Brasileiro de Pesquisas Físicas; Brasil
Fil: Heitmann, Katrin. Argonne National Laboratory; Estados Unidos
Fil: Kovacs, Eve. Argonne National Laboratory; Estados Unidos
Fil: Mao, Yao Yuan. University of Utah; Estados Unidos
description This paper presents the results of the Rubin Observatory Dark Energy Science Collaboration (DESC) 3x2pt tomography challenge, which served as a first step toward optimizing the tomographic binning strategy for the main DESC analysis. The task of choosing an optimal tomographic binning scheme for a photometric survey is made particularly delicate in the context of a metacalibrated lensing catalogue, as only the photometry from the bands included in the metacalibration process (usually riz and potentially g) can be used in sample definition. The goal of the challenge was to collect and compare bin assignment strategies under various metrics of a standard 3x2pt cosmology analysis in a highly idealized setting to establish a baseline for realistically complex follow-up studies; in this preliminary study, we used two sets of cosmological simulations of galaxy redshifts and photometry under a simple noise model neglecting photometric outliers and variation in observing conditions, and contributed algorithms were provided with a representative and complete training set. We review and evaluate the entries to the challenge, finding that even from this limited photometry information, multiple algorithms can separate tomographic bins reasonably well, reaching figures-of-merit scores close to the attainable maximum. We further find that adding the g band to riz photometry improves metric performance by ~15% and that the optimal bin assignment strategy depends strongly on the science case: which figure-of-merit is to be optimized, and which observables (clustering, lensing, or both) are included.
publishDate 2021
dc.date.none.fl_str_mv 2021-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/170946
Zuntz, Joe; Lanusse, Francois; Malz, Alex I.; Wright, Angus H.; Slosar, Anze; et al.; The LSST-DESC 3x2pt Tomography Optimization Challenge; Maynooth Academic Publishing; The Open Journal of Astrophysics; 4; 13; 10-2021; 1-26
2565-6120
CONICET Digital
CONICET
url http://hdl.handle.net/11336/170946
identifier_str_mv Zuntz, Joe; Lanusse, Francois; Malz, Alex I.; Wright, Angus H.; Slosar, Anze; et al.; The LSST-DESC 3x2pt Tomography Optimization Challenge; Maynooth Academic Publishing; The Open Journal of Astrophysics; 4; 13; 10-2021; 1-26
2565-6120
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.21105/astro.2108.13418
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2108.13418v2
info:eu-repo/semantics/altIdentifier/url/https://astro.theoj.org/article/29530-the-lsst-desc-3x2pt-tomography-optimization-challenge
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Maynooth Academic Publishing
publisher.none.fl_str_mv Maynooth Academic Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613724123430912
score 13.070432