A software tool for Microwave Tomography
- Autores
- Cervantes, Maria Jose; Gómez, Javier; Luparello, Diego; Morales, Martín; Fajardo, Jesus Ernesto; Galvan, Julian Marcelo; Caiafa, César Federico; Irastorza, Ramiro Miguel
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Recovering high-resolution images from limited sensory data typically leads to a serious ill-posed inverse problem, demanding inversion algorithms that effectively capture the prior information. Learning a good inverse mapping from training data faces severe challenges, including: (i) scarcity of training data; (ii) need for plausible reconstructions that are physically feasible; (iii) need for fast reconstruction, especially in real-time applications. We develop a successful system solving all these challenges, using as basic architecture the recurrent application of proximal gradient algorithm. We learn a proximal map that works well with real images based on residual networks. Contraction of the resulting map is analyzed, and incoherence conditions are investigated that drive the convergence of the iterates. Extensive experiments are carried out under different settings: (a) reconstructing abdominal MRI of pediatric patients from highly undersampled Fourier-spacedata and (b) superresolving natural face images. Our key findings include: 1. a recurrent ResNet with a single residual block unrolled from an iterative algorithm yields an effective proximal which accurately reveals MR image details. 2. Our architecture significantly outperforms conventional non-recurrent deep ResNets by 2dB SNR; it is also trained much more rapidly. 3. It outperforms state-of-the-art compressed-sensing Wavelet-based methods by 4dB SNR, with 100x speedups in reconstruction time.
Fil: Cervantes, Maria Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Gómez, Javier. Universidad Nacional Arturo Jauretche; Argentina
Fil: Luparello, Diego. Universidad Nacional Arturo Jauretche; Argentina
Fil: Morales, Martín. Universidad Nacional Arturo Jauretche; Argentina
Fil: Fajardo, Jesus Ernesto. University of Michigan; Estados Unidos
Fil: Galvan, Julian Marcelo. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
Fil: Irastorza, Ramiro Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Proceedings of the XXIV Argentinian Congress of Bioengineering. SABI 2023
Buenos Aires
Argentina
Sociedad Argentina de Bioingeniería - Materia
-
microwave
tomography
software - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/246708
Ver los metadatos del registro completo
id |
CONICETDig_1ec5c18e00a010c9aa9884975468a4be |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/246708 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A software tool for Microwave TomographyCervantes, Maria JoseGómez, JavierLuparello, DiegoMorales, MartínFajardo, Jesus ErnestoGalvan, Julian MarceloCaiafa, César FedericoIrastorza, Ramiro Miguelmicrowavetomographysoftwarehttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Recovering high-resolution images from limited sensory data typically leads to a serious ill-posed inverse problem, demanding inversion algorithms that effectively capture the prior information. Learning a good inverse mapping from training data faces severe challenges, including: (i) scarcity of training data; (ii) need for plausible reconstructions that are physically feasible; (iii) need for fast reconstruction, especially in real-time applications. We develop a successful system solving all these challenges, using as basic architecture the recurrent application of proximal gradient algorithm. We learn a proximal map that works well with real images based on residual networks. Contraction of the resulting map is analyzed, and incoherence conditions are investigated that drive the convergence of the iterates. Extensive experiments are carried out under different settings: (a) reconstructing abdominal MRI of pediatric patients from highly undersampled Fourier-spacedata and (b) superresolving natural face images. Our key findings include: 1. a recurrent ResNet with a single residual block unrolled from an iterative algorithm yields an effective proximal which accurately reveals MR image details. 2. Our architecture significantly outperforms conventional non-recurrent deep ResNets by 2dB SNR; it is also trained much more rapidly. 3. It outperforms state-of-the-art compressed-sensing Wavelet-based methods by 4dB SNR, with 100x speedups in reconstruction time.Fil: Cervantes, Maria Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaFil: Gómez, Javier. Universidad Nacional Arturo Jauretche; ArgentinaFil: Luparello, Diego. Universidad Nacional Arturo Jauretche; ArgentinaFil: Morales, Martín. Universidad Nacional Arturo Jauretche; ArgentinaFil: Fajardo, Jesus Ernesto. University of Michigan; Estados UnidosFil: Galvan, Julian Marcelo. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Irastorza, Ramiro Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaProceedings of the XXIV Argentinian Congress of Bioengineering. SABI 2023Buenos AiresArgentinaSociedad Argentina de BioingenieríaSpringer Nature SwitzerlandBallina, Fernando EmilioArmentano, RicardoAcevedo, Rubén CarlosMeschino, Gustavo Javier2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/246708A software tool for Microwave Tomography; Proceedings of the XXIV Argentinian Congress of Bioengineering. SABI 2023; Buenos Aires; Argentina; 2023; 1-129783031517228CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.springerprofessional.de/En/a-software-tool-for-microwave-tomography/27152812info:eu-repo/semantics/altIdentifier/url/https://www.springerprofessional.de/En/advances-in-bioengineering-and-clinical-engineering/27152706?tocPage=1Internacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:53:39Zoai:ri.conicet.gov.ar:11336/246708instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:53:39.856CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A software tool for Microwave Tomography |
title |
A software tool for Microwave Tomography |
spellingShingle |
A software tool for Microwave Tomography Cervantes, Maria Jose microwave tomography software |
title_short |
A software tool for Microwave Tomography |
title_full |
A software tool for Microwave Tomography |
title_fullStr |
A software tool for Microwave Tomography |
title_full_unstemmed |
A software tool for Microwave Tomography |
title_sort |
A software tool for Microwave Tomography |
dc.creator.none.fl_str_mv |
Cervantes, Maria Jose Gómez, Javier Luparello, Diego Morales, Martín Fajardo, Jesus Ernesto Galvan, Julian Marcelo Caiafa, César Federico Irastorza, Ramiro Miguel |
author |
Cervantes, Maria Jose |
author_facet |
Cervantes, Maria Jose Gómez, Javier Luparello, Diego Morales, Martín Fajardo, Jesus Ernesto Galvan, Julian Marcelo Caiafa, César Federico Irastorza, Ramiro Miguel |
author_role |
author |
author2 |
Gómez, Javier Luparello, Diego Morales, Martín Fajardo, Jesus Ernesto Galvan, Julian Marcelo Caiafa, César Federico Irastorza, Ramiro Miguel |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
Ballina, Fernando Emilio Armentano, Ricardo Acevedo, Rubén Carlos Meschino, Gustavo Javier |
dc.subject.none.fl_str_mv |
microwave tomography software |
topic |
microwave tomography software |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Recovering high-resolution images from limited sensory data typically leads to a serious ill-posed inverse problem, demanding inversion algorithms that effectively capture the prior information. Learning a good inverse mapping from training data faces severe challenges, including: (i) scarcity of training data; (ii) need for plausible reconstructions that are physically feasible; (iii) need for fast reconstruction, especially in real-time applications. We develop a successful system solving all these challenges, using as basic architecture the recurrent application of proximal gradient algorithm. We learn a proximal map that works well with real images based on residual networks. Contraction of the resulting map is analyzed, and incoherence conditions are investigated that drive the convergence of the iterates. Extensive experiments are carried out under different settings: (a) reconstructing abdominal MRI of pediatric patients from highly undersampled Fourier-spacedata and (b) superresolving natural face images. Our key findings include: 1. a recurrent ResNet with a single residual block unrolled from an iterative algorithm yields an effective proximal which accurately reveals MR image details. 2. Our architecture significantly outperforms conventional non-recurrent deep ResNets by 2dB SNR; it is also trained much more rapidly. 3. It outperforms state-of-the-art compressed-sensing Wavelet-based methods by 4dB SNR, with 100x speedups in reconstruction time. Fil: Cervantes, Maria Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina Fil: Gómez, Javier. Universidad Nacional Arturo Jauretche; Argentina Fil: Luparello, Diego. Universidad Nacional Arturo Jauretche; Argentina Fil: Morales, Martín. Universidad Nacional Arturo Jauretche; Argentina Fil: Fajardo, Jesus Ernesto. University of Michigan; Estados Unidos Fil: Galvan, Julian Marcelo. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina Fil: Irastorza, Ramiro Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina Proceedings of the XXIV Argentinian Congress of Bioengineering. SABI 2023 Buenos Aires Argentina Sociedad Argentina de Bioingeniería |
description |
Recovering high-resolution images from limited sensory data typically leads to a serious ill-posed inverse problem, demanding inversion algorithms that effectively capture the prior information. Learning a good inverse mapping from training data faces severe challenges, including: (i) scarcity of training data; (ii) need for plausible reconstructions that are physically feasible; (iii) need for fast reconstruction, especially in real-time applications. We develop a successful system solving all these challenges, using as basic architecture the recurrent application of proximal gradient algorithm. We learn a proximal map that works well with real images based on residual networks. Contraction of the resulting map is analyzed, and incoherence conditions are investigated that drive the convergence of the iterates. Extensive experiments are carried out under different settings: (a) reconstructing abdominal MRI of pediatric patients from highly undersampled Fourier-spacedata and (b) superresolving natural face images. Our key findings include: 1. a recurrent ResNet with a single residual block unrolled from an iterative algorithm yields an effective proximal which accurately reveals MR image details. 2. Our architecture significantly outperforms conventional non-recurrent deep ResNets by 2dB SNR; it is also trained much more rapidly. 3. It outperforms state-of-the-art compressed-sensing Wavelet-based methods by 4dB SNR, with 100x speedups in reconstruction time. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Congreso Book http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/246708 A software tool for Microwave Tomography; Proceedings of the XXIV Argentinian Congress of Bioengineering. SABI 2023; Buenos Aires; Argentina; 2023; 1-12 9783031517228 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/246708 |
identifier_str_mv |
A software tool for Microwave Tomography; Proceedings of the XXIV Argentinian Congress of Bioengineering. SABI 2023; Buenos Aires; Argentina; 2023; 1-12 9783031517228 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.springerprofessional.de/En/a-software-tool-for-microwave-tomography/27152812 info:eu-repo/semantics/altIdentifier/url/https://www.springerprofessional.de/En/advances-in-bioengineering-and-clinical-engineering/27152706?tocPage=1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Internacional |
dc.publisher.none.fl_str_mv |
Springer Nature Switzerland |
publisher.none.fl_str_mv |
Springer Nature Switzerland |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613636964745216 |
score |
13.070432 |