Revealing stable SNPs and genomic prediction insights across environments enhance breeding strategies of productivity, defense, and climate-adaptability traits in white spruce
- Autores
- Cappa, Eduardo Pablo; Chen, Charles; Klutsch, Jennifer G.; Sebastian Azcona, Jaime; Ratcliffe, Blaise; Wei, Xiaojing; Da Ros, Letitia; Liu, Yang; Bhumireddy, Sudarshana Reddy; Benowicz, Andy; Mansfield, Shawn D.; Erbilgin, Nadir; Thomas, Barb R.; El-Kassaby, Yousry A.
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Exploring the relationship between phenotype, genotype, and environment is essential in quantitative genetics. Considering the complex genetic architecture of economically important traits, integrating genotype-by-environment interactions in a genome-wide association (GWAS) and genomic prediction (GP) framework is imperative. This integration is crucial for identifying robust markers with stability across diverse environments and improving the predictive accuracy of individuals’ performance within specific target environments. We conducted a multi-environment GWAS and GP analysis for 30 productivity, defense, and climate-adaptability traits on 1540 white spruce trees from Alberta, Canada, genotyped for 467,224 SNPs and growing across three environments. We identified 563 significant associations (p-value < 1.07 ×10−05) across the studied traits and environments, with 105 SNPs showing overlapping associations in two or three environments. Wood density, myrcene, total monoterpenes, α-pinene, and catechin exhibited the highest overlap (>50%) across environments. Gas exchange traits, including intercellular CO2 concentration and intrinsic water use efficiency, showed the highest number of significant associations (>38%) but less stability (<1.2%) across environments. Predictive ability (PA) varied significantly (0.03–0.41) across environments for 20 traits, with stable carbon isotope ratio having the highest average PA (0.36) and gas exchange traits the lowest (0.07). Only two traits showed differences in prediction bias (PB) across environments, with 80% of site-trait PB falling within a narrow range (0.90 to 1.10). Integrating multi-environment GWAS and GP analyses proved useful in identifying site-specific markers, understanding environmental impacts on PA and PB, and ultimately providing indirect insights into the environmental factors that influenced this white spruce breeding program.
Fil: Cappa, Eduardo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; Argentina
Fil: Chen, Charles. Oklahoma State University; Estados Unidos
Fil: Klutsch, Jennifer G.. University of Alberta; Canadá. Canadian Forest Service; Canadá
Fil: Sebastian Azcona, Jaime. Consejo Superior de Investigaciones Cientificas. Instituto de Recursos Naturales y Agrobiología de Sevilla; España. University of Alberta; Canadá
Fil: Ratcliffe, Blaise. University of British Columbia; Canadá
Fil: Wei, Xiaojing. University of Alberta; Canadá
Fil: Da Ros, Letitia. University of British Columbia; Canadá
Fil: Liu, Yang. University of British Columbia; Canadá
Fil: Bhumireddy, Sudarshana Reddy. University of Alberta; Canadá. University of Saskatchewan; Canadá
Fil: Benowicz, Andy. Alberta Forestry and Parks; Canadá
Fil: Mansfield, Shawn D.. University of British Columbia; Canadá
Fil: Erbilgin, Nadir. University of Alberta; Canadá
Fil: Thomas, Barb R.. University of Alberta; Canadá
Fil: El-Kassaby, Yousry A.. University of British Columbia; Canadá - Materia
-
GWAS
GENOMIC PREDICTION
GENOTYPE-ENVIRONMENT INTERACTION
MARKER STABILITY
ACROSS ENVIRONMENT PREDICITIVE ABILITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/280532
Ver los metadatos del registro completo
| id |
CONICETDig_7611d03e0c9a1fdb95660fd4448b8c38 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/280532 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Revealing stable SNPs and genomic prediction insights across environments enhance breeding strategies of productivity, defense, and climate-adaptability traits in white spruceCappa, Eduardo PabloChen, CharlesKlutsch, Jennifer G.Sebastian Azcona, JaimeRatcliffe, BlaiseWei, XiaojingDa Ros, LetitiaLiu, YangBhumireddy, Sudarshana ReddyBenowicz, AndyMansfield, Shawn D.Erbilgin, NadirThomas, Barb R.El-Kassaby, Yousry A.GWASGENOMIC PREDICTIONGENOTYPE-ENVIRONMENT INTERACTIONMARKER STABILITYACROSS ENVIRONMENT PREDICITIVE ABILITYhttps://purl.org/becyt/ford/4.5https://purl.org/becyt/ford/4Exploring the relationship between phenotype, genotype, and environment is essential in quantitative genetics. Considering the complex genetic architecture of economically important traits, integrating genotype-by-environment interactions in a genome-wide association (GWAS) and genomic prediction (GP) framework is imperative. This integration is crucial for identifying robust markers with stability across diverse environments and improving the predictive accuracy of individuals’ performance within specific target environments. We conducted a multi-environment GWAS and GP analysis for 30 productivity, defense, and climate-adaptability traits on 1540 white spruce trees from Alberta, Canada, genotyped for 467,224 SNPs and growing across three environments. We identified 563 significant associations (p-value < 1.07 ×10−05) across the studied traits and environments, with 105 SNPs showing overlapping associations in two or three environments. Wood density, myrcene, total monoterpenes, α-pinene, and catechin exhibited the highest overlap (>50%) across environments. Gas exchange traits, including intercellular CO2 concentration and intrinsic water use efficiency, showed the highest number of significant associations (>38%) but less stability (<1.2%) across environments. Predictive ability (PA) varied significantly (0.03–0.41) across environments for 20 traits, with stable carbon isotope ratio having the highest average PA (0.36) and gas exchange traits the lowest (0.07). Only two traits showed differences in prediction bias (PB) across environments, with 80% of site-trait PB falling within a narrow range (0.90 to 1.10). Integrating multi-environment GWAS and GP analyses proved useful in identifying site-specific markers, understanding environmental impacts on PA and PB, and ultimately providing indirect insights into the environmental factors that influenced this white spruce breeding program.Fil: Cappa, Eduardo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; ArgentinaFil: Chen, Charles. Oklahoma State University; Estados UnidosFil: Klutsch, Jennifer G.. University of Alberta; Canadá. Canadian Forest Service; CanadáFil: Sebastian Azcona, Jaime. Consejo Superior de Investigaciones Cientificas. Instituto de Recursos Naturales y Agrobiología de Sevilla; España. University of Alberta; CanadáFil: Ratcliffe, Blaise. University of British Columbia; CanadáFil: Wei, Xiaojing. University of Alberta; CanadáFil: Da Ros, Letitia. University of British Columbia; CanadáFil: Liu, Yang. University of British Columbia; CanadáFil: Bhumireddy, Sudarshana Reddy. University of Alberta; Canadá. University of Saskatchewan; CanadáFil: Benowicz, Andy. Alberta Forestry and Parks; CanadáFil: Mansfield, Shawn D.. University of British Columbia; CanadáFil: Erbilgin, Nadir. University of Alberta; CanadáFil: Thomas, Barb R.. University of Alberta; CanadáFil: El-Kassaby, Yousry A.. University of British Columbia; CanadáNature Publishing Group2025-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/280532Cappa, Eduardo Pablo; Chen, Charles; Klutsch, Jennifer G.; Sebastian Azcona, Jaime; Ratcliffe, Blaise; et al.; Revealing stable SNPs and genomic prediction insights across environments enhance breeding strategies of productivity, defense, and climate-adaptability traits in white spruce; Nature Publishing Group; Heredity; 134; 3-4; 2-2025; 186-1990018-067XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41437-025-00747-zinfo:eu-repo/semantics/altIdentifier/doi/10.1038/s41437-025-00747-zinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2026-02-06T12:29:54Zoai:ri.conicet.gov.ar:11336/280532instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982026-02-06 12:29:54.769CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Revealing stable SNPs and genomic prediction insights across environments enhance breeding strategies of productivity, defense, and climate-adaptability traits in white spruce |
| title |
Revealing stable SNPs and genomic prediction insights across environments enhance breeding strategies of productivity, defense, and climate-adaptability traits in white spruce |
| spellingShingle |
Revealing stable SNPs and genomic prediction insights across environments enhance breeding strategies of productivity, defense, and climate-adaptability traits in white spruce Cappa, Eduardo Pablo GWAS GENOMIC PREDICTION GENOTYPE-ENVIRONMENT INTERACTION MARKER STABILITY ACROSS ENVIRONMENT PREDICITIVE ABILITY |
| title_short |
Revealing stable SNPs and genomic prediction insights across environments enhance breeding strategies of productivity, defense, and climate-adaptability traits in white spruce |
| title_full |
Revealing stable SNPs and genomic prediction insights across environments enhance breeding strategies of productivity, defense, and climate-adaptability traits in white spruce |
| title_fullStr |
Revealing stable SNPs and genomic prediction insights across environments enhance breeding strategies of productivity, defense, and climate-adaptability traits in white spruce |
| title_full_unstemmed |
Revealing stable SNPs and genomic prediction insights across environments enhance breeding strategies of productivity, defense, and climate-adaptability traits in white spruce |
| title_sort |
Revealing stable SNPs and genomic prediction insights across environments enhance breeding strategies of productivity, defense, and climate-adaptability traits in white spruce |
| dc.creator.none.fl_str_mv |
Cappa, Eduardo Pablo Chen, Charles Klutsch, Jennifer G. Sebastian Azcona, Jaime Ratcliffe, Blaise Wei, Xiaojing Da Ros, Letitia Liu, Yang Bhumireddy, Sudarshana Reddy Benowicz, Andy Mansfield, Shawn D. Erbilgin, Nadir Thomas, Barb R. El-Kassaby, Yousry A. |
| author |
Cappa, Eduardo Pablo |
| author_facet |
Cappa, Eduardo Pablo Chen, Charles Klutsch, Jennifer G. Sebastian Azcona, Jaime Ratcliffe, Blaise Wei, Xiaojing Da Ros, Letitia Liu, Yang Bhumireddy, Sudarshana Reddy Benowicz, Andy Mansfield, Shawn D. Erbilgin, Nadir Thomas, Barb R. El-Kassaby, Yousry A. |
| author_role |
author |
| author2 |
Chen, Charles Klutsch, Jennifer G. Sebastian Azcona, Jaime Ratcliffe, Blaise Wei, Xiaojing Da Ros, Letitia Liu, Yang Bhumireddy, Sudarshana Reddy Benowicz, Andy Mansfield, Shawn D. Erbilgin, Nadir Thomas, Barb R. El-Kassaby, Yousry A. |
| author2_role |
author author author author author author author author author author author author author |
| dc.subject.none.fl_str_mv |
GWAS GENOMIC PREDICTION GENOTYPE-ENVIRONMENT INTERACTION MARKER STABILITY ACROSS ENVIRONMENT PREDICITIVE ABILITY |
| topic |
GWAS GENOMIC PREDICTION GENOTYPE-ENVIRONMENT INTERACTION MARKER STABILITY ACROSS ENVIRONMENT PREDICITIVE ABILITY |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.5 https://purl.org/becyt/ford/4 |
| dc.description.none.fl_txt_mv |
Exploring the relationship between phenotype, genotype, and environment is essential in quantitative genetics. Considering the complex genetic architecture of economically important traits, integrating genotype-by-environment interactions in a genome-wide association (GWAS) and genomic prediction (GP) framework is imperative. This integration is crucial for identifying robust markers with stability across diverse environments and improving the predictive accuracy of individuals’ performance within specific target environments. We conducted a multi-environment GWAS and GP analysis for 30 productivity, defense, and climate-adaptability traits on 1540 white spruce trees from Alberta, Canada, genotyped for 467,224 SNPs and growing across three environments. We identified 563 significant associations (p-value < 1.07 ×10−05) across the studied traits and environments, with 105 SNPs showing overlapping associations in two or three environments. Wood density, myrcene, total monoterpenes, α-pinene, and catechin exhibited the highest overlap (>50%) across environments. Gas exchange traits, including intercellular CO2 concentration and intrinsic water use efficiency, showed the highest number of significant associations (>38%) but less stability (<1.2%) across environments. Predictive ability (PA) varied significantly (0.03–0.41) across environments for 20 traits, with stable carbon isotope ratio having the highest average PA (0.36) and gas exchange traits the lowest (0.07). Only two traits showed differences in prediction bias (PB) across environments, with 80% of site-trait PB falling within a narrow range (0.90 to 1.10). Integrating multi-environment GWAS and GP analyses proved useful in identifying site-specific markers, understanding environmental impacts on PA and PB, and ultimately providing indirect insights into the environmental factors that influenced this white spruce breeding program. Fil: Cappa, Eduardo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; Argentina Fil: Chen, Charles. Oklahoma State University; Estados Unidos Fil: Klutsch, Jennifer G.. University of Alberta; Canadá. Canadian Forest Service; Canadá Fil: Sebastian Azcona, Jaime. Consejo Superior de Investigaciones Cientificas. Instituto de Recursos Naturales y Agrobiología de Sevilla; España. University of Alberta; Canadá Fil: Ratcliffe, Blaise. University of British Columbia; Canadá Fil: Wei, Xiaojing. University of Alberta; Canadá Fil: Da Ros, Letitia. University of British Columbia; Canadá Fil: Liu, Yang. University of British Columbia; Canadá Fil: Bhumireddy, Sudarshana Reddy. University of Alberta; Canadá. University of Saskatchewan; Canadá Fil: Benowicz, Andy. Alberta Forestry and Parks; Canadá Fil: Mansfield, Shawn D.. University of British Columbia; Canadá Fil: Erbilgin, Nadir. University of Alberta; Canadá Fil: Thomas, Barb R.. University of Alberta; Canadá Fil: El-Kassaby, Yousry A.. University of British Columbia; Canadá |
| description |
Exploring the relationship between phenotype, genotype, and environment is essential in quantitative genetics. Considering the complex genetic architecture of economically important traits, integrating genotype-by-environment interactions in a genome-wide association (GWAS) and genomic prediction (GP) framework is imperative. This integration is crucial for identifying robust markers with stability across diverse environments and improving the predictive accuracy of individuals’ performance within specific target environments. We conducted a multi-environment GWAS and GP analysis for 30 productivity, defense, and climate-adaptability traits on 1540 white spruce trees from Alberta, Canada, genotyped for 467,224 SNPs and growing across three environments. We identified 563 significant associations (p-value < 1.07 ×10−05) across the studied traits and environments, with 105 SNPs showing overlapping associations in two or three environments. Wood density, myrcene, total monoterpenes, α-pinene, and catechin exhibited the highest overlap (>50%) across environments. Gas exchange traits, including intercellular CO2 concentration and intrinsic water use efficiency, showed the highest number of significant associations (>38%) but less stability (<1.2%) across environments. Predictive ability (PA) varied significantly (0.03–0.41) across environments for 20 traits, with stable carbon isotope ratio having the highest average PA (0.36) and gas exchange traits the lowest (0.07). Only two traits showed differences in prediction bias (PB) across environments, with 80% of site-trait PB falling within a narrow range (0.90 to 1.10). Integrating multi-environment GWAS and GP analyses proved useful in identifying site-specific markers, understanding environmental impacts on PA and PB, and ultimately providing indirect insights into the environmental factors that influenced this white spruce breeding program. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-02 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/280532 Cappa, Eduardo Pablo; Chen, Charles; Klutsch, Jennifer G.; Sebastian Azcona, Jaime; Ratcliffe, Blaise; et al.; Revealing stable SNPs and genomic prediction insights across environments enhance breeding strategies of productivity, defense, and climate-adaptability traits in white spruce; Nature Publishing Group; Heredity; 134; 3-4; 2-2025; 186-199 0018-067X CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/280532 |
| identifier_str_mv |
Cappa, Eduardo Pablo; Chen, Charles; Klutsch, Jennifer G.; Sebastian Azcona, Jaime; Ratcliffe, Blaise; et al.; Revealing stable SNPs and genomic prediction insights across environments enhance breeding strategies of productivity, defense, and climate-adaptability traits in white spruce; Nature Publishing Group; Heredity; 134; 3-4; 2-2025; 186-199 0018-067X CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41437-025-00747-z info:eu-repo/semantics/altIdentifier/doi/10.1038/s41437-025-00747-z |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Nature Publishing Group |
| publisher.none.fl_str_mv |
Nature Publishing Group |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1856403132692561920 |
| score |
13.106097 |