Revealing stable SNPs and genomic prediction insights across environments enhance breeding strategies of productivity, defense, and climate-adaptability traits in white spruce

Autores
Cappa, Eduardo Pablo; Chen, Charles; Klutsch, Jennifer G.; Sebastian Azcona, Jaime; Ratcliffe, Blaise; Wei, Xiaojing; Da Ros, Letitia; Liu, Yang; Bhumireddy, Sudarshana Reddy; Benowicz, Andy; Mansfield, Shawn D.; Erbilgin, Nadir; Thomas, Barb R.; El-Kassaby, Yousry A.
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Exploring the relationship between phenotype, genotype, and environment is essential in quantitative genetics. Considering the complex genetic architecture of economically important traits, integrating genotype-by-environment interactions in a genome-wide association (GWAS) and genomic prediction (GP) framework is imperative. This integration is crucial for identifying robust markers with stability across diverse environments and improving the predictive accuracy of individuals’ performance within specific target environments. We conducted a multi-environment GWAS and GP analysis for 30 productivity, defense, and climate-adaptability traits on 1540 white spruce trees from Alberta, Canada, genotyped for 467,224 SNPs and growing across three environments. We identified 563 significant associations (p-value < 1.07 ×10−05) across the studied traits and environments, with 105 SNPs showing overlapping associations in two or three environments. Wood density, myrcene, total monoterpenes, α-pinene, and catechin exhibited the highest overlap (>50%) across environments. Gas exchange traits, including intercellular CO2 concentration and intrinsic water use efficiency, showed the highest number of significant associations (>38%) but less stability (<1.2%) across environments. Predictive ability (PA) varied significantly (0.03–0.41) across environments for 20 traits, with stable carbon isotope ratio having the highest average PA (0.36) and gas exchange traits the lowest (0.07). Only two traits showed differences in prediction bias (PB) across environments, with 80% of site-trait PB falling within a narrow range (0.90 to 1.10). Integrating multi-environment GWAS and GP analyses proved useful in identifying site-specific markers, understanding environmental impacts on PA and PB, and ultimately providing indirect insights into the environmental factors that influenced this white spruce breeding program.
Fil: Cappa, Eduardo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; Argentina
Fil: Chen, Charles. Oklahoma State University; Estados Unidos
Fil: Klutsch, Jennifer G.. University of Alberta; Canadá. Canadian Forest Service; Canadá
Fil: Sebastian Azcona, Jaime. Consejo Superior de Investigaciones Cientificas. Instituto de Recursos Naturales y Agrobiología de Sevilla; España. University of Alberta; Canadá
Fil: Ratcliffe, Blaise. University of British Columbia; Canadá
Fil: Wei, Xiaojing. University of Alberta; Canadá
Fil: Da Ros, Letitia. University of British Columbia; Canadá
Fil: Liu, Yang. University of British Columbia; Canadá
Fil: Bhumireddy, Sudarshana Reddy. University of Alberta; Canadá. University of Saskatchewan; Canadá
Fil: Benowicz, Andy. Alberta Forestry and Parks; Canadá
Fil: Mansfield, Shawn D.. University of British Columbia; Canadá
Fil: Erbilgin, Nadir. University of Alberta; Canadá
Fil: Thomas, Barb R.. University of Alberta; Canadá
Fil: El-Kassaby, Yousry A.. University of British Columbia; Canadá
Materia
GWAS
GENOMIC PREDICTION
GENOTYPE-ENVIRONMENT INTERACTION
MARKER STABILITY
ACROSS ENVIRONMENT PREDICITIVE ABILITY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/280532

id CONICETDig_7611d03e0c9a1fdb95660fd4448b8c38
oai_identifier_str oai:ri.conicet.gov.ar:11336/280532
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Revealing stable SNPs and genomic prediction insights across environments enhance breeding strategies of productivity, defense, and climate-adaptability traits in white spruceCappa, Eduardo PabloChen, CharlesKlutsch, Jennifer G.Sebastian Azcona, JaimeRatcliffe, BlaiseWei, XiaojingDa Ros, LetitiaLiu, YangBhumireddy, Sudarshana ReddyBenowicz, AndyMansfield, Shawn D.Erbilgin, NadirThomas, Barb R.El-Kassaby, Yousry A.GWASGENOMIC PREDICTIONGENOTYPE-ENVIRONMENT INTERACTIONMARKER STABILITYACROSS ENVIRONMENT PREDICITIVE ABILITYhttps://purl.org/becyt/ford/4.5https://purl.org/becyt/ford/4Exploring the relationship between phenotype, genotype, and environment is essential in quantitative genetics. Considering the complex genetic architecture of economically important traits, integrating genotype-by-environment interactions in a genome-wide association (GWAS) and genomic prediction (GP) framework is imperative. This integration is crucial for identifying robust markers with stability across diverse environments and improving the predictive accuracy of individuals’ performance within specific target environments. We conducted a multi-environment GWAS and GP analysis for 30 productivity, defense, and climate-adaptability traits on 1540 white spruce trees from Alberta, Canada, genotyped for 467,224 SNPs and growing across three environments. We identified 563 significant associations (p-value < 1.07 ×10−05) across the studied traits and environments, with 105 SNPs showing overlapping associations in two or three environments. Wood density, myrcene, total monoterpenes, α-pinene, and catechin exhibited the highest overlap (>50%) across environments. Gas exchange traits, including intercellular CO2 concentration and intrinsic water use efficiency, showed the highest number of significant associations (>38%) but less stability (<1.2%) across environments. Predictive ability (PA) varied significantly (0.03–0.41) across environments for 20 traits, with stable carbon isotope ratio having the highest average PA (0.36) and gas exchange traits the lowest (0.07). Only two traits showed differences in prediction bias (PB) across environments, with 80% of site-trait PB falling within a narrow range (0.90 to 1.10). Integrating multi-environment GWAS and GP analyses proved useful in identifying site-specific markers, understanding environmental impacts on PA and PB, and ultimately providing indirect insights into the environmental factors that influenced this white spruce breeding program.Fil: Cappa, Eduardo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; ArgentinaFil: Chen, Charles. Oklahoma State University; Estados UnidosFil: Klutsch, Jennifer G.. University of Alberta; Canadá. Canadian Forest Service; CanadáFil: Sebastian Azcona, Jaime. Consejo Superior de Investigaciones Cientificas. Instituto de Recursos Naturales y Agrobiología de Sevilla; España. University of Alberta; CanadáFil: Ratcliffe, Blaise. University of British Columbia; CanadáFil: Wei, Xiaojing. University of Alberta; CanadáFil: Da Ros, Letitia. University of British Columbia; CanadáFil: Liu, Yang. University of British Columbia; CanadáFil: Bhumireddy, Sudarshana Reddy. University of Alberta; Canadá. University of Saskatchewan; CanadáFil: Benowicz, Andy. Alberta Forestry and Parks; CanadáFil: Mansfield, Shawn D.. University of British Columbia; CanadáFil: Erbilgin, Nadir. University of Alberta; CanadáFil: Thomas, Barb R.. University of Alberta; CanadáFil: El-Kassaby, Yousry A.. University of British Columbia; CanadáNature Publishing Group2025-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/280532Cappa, Eduardo Pablo; Chen, Charles; Klutsch, Jennifer G.; Sebastian Azcona, Jaime; Ratcliffe, Blaise; et al.; Revealing stable SNPs and genomic prediction insights across environments enhance breeding strategies of productivity, defense, and climate-adaptability traits in white spruce; Nature Publishing Group; Heredity; 134; 3-4; 2-2025; 186-1990018-067XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41437-025-00747-zinfo:eu-repo/semantics/altIdentifier/doi/10.1038/s41437-025-00747-zinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2026-02-06T12:29:54Zoai:ri.conicet.gov.ar:11336/280532instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982026-02-06 12:29:54.769CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Revealing stable SNPs and genomic prediction insights across environments enhance breeding strategies of productivity, defense, and climate-adaptability traits in white spruce
title Revealing stable SNPs and genomic prediction insights across environments enhance breeding strategies of productivity, defense, and climate-adaptability traits in white spruce
spellingShingle Revealing stable SNPs and genomic prediction insights across environments enhance breeding strategies of productivity, defense, and climate-adaptability traits in white spruce
Cappa, Eduardo Pablo
GWAS
GENOMIC PREDICTION
GENOTYPE-ENVIRONMENT INTERACTION
MARKER STABILITY
ACROSS ENVIRONMENT PREDICITIVE ABILITY
title_short Revealing stable SNPs and genomic prediction insights across environments enhance breeding strategies of productivity, defense, and climate-adaptability traits in white spruce
title_full Revealing stable SNPs and genomic prediction insights across environments enhance breeding strategies of productivity, defense, and climate-adaptability traits in white spruce
title_fullStr Revealing stable SNPs and genomic prediction insights across environments enhance breeding strategies of productivity, defense, and climate-adaptability traits in white spruce
title_full_unstemmed Revealing stable SNPs and genomic prediction insights across environments enhance breeding strategies of productivity, defense, and climate-adaptability traits in white spruce
title_sort Revealing stable SNPs and genomic prediction insights across environments enhance breeding strategies of productivity, defense, and climate-adaptability traits in white spruce
dc.creator.none.fl_str_mv Cappa, Eduardo Pablo
Chen, Charles
Klutsch, Jennifer G.
Sebastian Azcona, Jaime
Ratcliffe, Blaise
Wei, Xiaojing
Da Ros, Letitia
Liu, Yang
Bhumireddy, Sudarshana Reddy
Benowicz, Andy
Mansfield, Shawn D.
Erbilgin, Nadir
Thomas, Barb R.
El-Kassaby, Yousry A.
author Cappa, Eduardo Pablo
author_facet Cappa, Eduardo Pablo
Chen, Charles
Klutsch, Jennifer G.
Sebastian Azcona, Jaime
Ratcliffe, Blaise
Wei, Xiaojing
Da Ros, Letitia
Liu, Yang
Bhumireddy, Sudarshana Reddy
Benowicz, Andy
Mansfield, Shawn D.
Erbilgin, Nadir
Thomas, Barb R.
El-Kassaby, Yousry A.
author_role author
author2 Chen, Charles
Klutsch, Jennifer G.
Sebastian Azcona, Jaime
Ratcliffe, Blaise
Wei, Xiaojing
Da Ros, Letitia
Liu, Yang
Bhumireddy, Sudarshana Reddy
Benowicz, Andy
Mansfield, Shawn D.
Erbilgin, Nadir
Thomas, Barb R.
El-Kassaby, Yousry A.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv GWAS
GENOMIC PREDICTION
GENOTYPE-ENVIRONMENT INTERACTION
MARKER STABILITY
ACROSS ENVIRONMENT PREDICITIVE ABILITY
topic GWAS
GENOMIC PREDICTION
GENOTYPE-ENVIRONMENT INTERACTION
MARKER STABILITY
ACROSS ENVIRONMENT PREDICITIVE ABILITY
purl_subject.fl_str_mv https://purl.org/becyt/ford/4.5
https://purl.org/becyt/ford/4
dc.description.none.fl_txt_mv Exploring the relationship between phenotype, genotype, and environment is essential in quantitative genetics. Considering the complex genetic architecture of economically important traits, integrating genotype-by-environment interactions in a genome-wide association (GWAS) and genomic prediction (GP) framework is imperative. This integration is crucial for identifying robust markers with stability across diverse environments and improving the predictive accuracy of individuals’ performance within specific target environments. We conducted a multi-environment GWAS and GP analysis for 30 productivity, defense, and climate-adaptability traits on 1540 white spruce trees from Alberta, Canada, genotyped for 467,224 SNPs and growing across three environments. We identified 563 significant associations (p-value < 1.07 ×10−05) across the studied traits and environments, with 105 SNPs showing overlapping associations in two or three environments. Wood density, myrcene, total monoterpenes, α-pinene, and catechin exhibited the highest overlap (>50%) across environments. Gas exchange traits, including intercellular CO2 concentration and intrinsic water use efficiency, showed the highest number of significant associations (>38%) but less stability (<1.2%) across environments. Predictive ability (PA) varied significantly (0.03–0.41) across environments for 20 traits, with stable carbon isotope ratio having the highest average PA (0.36) and gas exchange traits the lowest (0.07). Only two traits showed differences in prediction bias (PB) across environments, with 80% of site-trait PB falling within a narrow range (0.90 to 1.10). Integrating multi-environment GWAS and GP analyses proved useful in identifying site-specific markers, understanding environmental impacts on PA and PB, and ultimately providing indirect insights into the environmental factors that influenced this white spruce breeding program.
Fil: Cappa, Eduardo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; Argentina
Fil: Chen, Charles. Oklahoma State University; Estados Unidos
Fil: Klutsch, Jennifer G.. University of Alberta; Canadá. Canadian Forest Service; Canadá
Fil: Sebastian Azcona, Jaime. Consejo Superior de Investigaciones Cientificas. Instituto de Recursos Naturales y Agrobiología de Sevilla; España. University of Alberta; Canadá
Fil: Ratcliffe, Blaise. University of British Columbia; Canadá
Fil: Wei, Xiaojing. University of Alberta; Canadá
Fil: Da Ros, Letitia. University of British Columbia; Canadá
Fil: Liu, Yang. University of British Columbia; Canadá
Fil: Bhumireddy, Sudarshana Reddy. University of Alberta; Canadá. University of Saskatchewan; Canadá
Fil: Benowicz, Andy. Alberta Forestry and Parks; Canadá
Fil: Mansfield, Shawn D.. University of British Columbia; Canadá
Fil: Erbilgin, Nadir. University of Alberta; Canadá
Fil: Thomas, Barb R.. University of Alberta; Canadá
Fil: El-Kassaby, Yousry A.. University of British Columbia; Canadá
description Exploring the relationship between phenotype, genotype, and environment is essential in quantitative genetics. Considering the complex genetic architecture of economically important traits, integrating genotype-by-environment interactions in a genome-wide association (GWAS) and genomic prediction (GP) framework is imperative. This integration is crucial for identifying robust markers with stability across diverse environments and improving the predictive accuracy of individuals’ performance within specific target environments. We conducted a multi-environment GWAS and GP analysis for 30 productivity, defense, and climate-adaptability traits on 1540 white spruce trees from Alberta, Canada, genotyped for 467,224 SNPs and growing across three environments. We identified 563 significant associations (p-value < 1.07 ×10−05) across the studied traits and environments, with 105 SNPs showing overlapping associations in two or three environments. Wood density, myrcene, total monoterpenes, α-pinene, and catechin exhibited the highest overlap (>50%) across environments. Gas exchange traits, including intercellular CO2 concentration and intrinsic water use efficiency, showed the highest number of significant associations (>38%) but less stability (<1.2%) across environments. Predictive ability (PA) varied significantly (0.03–0.41) across environments for 20 traits, with stable carbon isotope ratio having the highest average PA (0.36) and gas exchange traits the lowest (0.07). Only two traits showed differences in prediction bias (PB) across environments, with 80% of site-trait PB falling within a narrow range (0.90 to 1.10). Integrating multi-environment GWAS and GP analyses proved useful in identifying site-specific markers, understanding environmental impacts on PA and PB, and ultimately providing indirect insights into the environmental factors that influenced this white spruce breeding program.
publishDate 2025
dc.date.none.fl_str_mv 2025-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/280532
Cappa, Eduardo Pablo; Chen, Charles; Klutsch, Jennifer G.; Sebastian Azcona, Jaime; Ratcliffe, Blaise; et al.; Revealing stable SNPs and genomic prediction insights across environments enhance breeding strategies of productivity, defense, and climate-adaptability traits in white spruce; Nature Publishing Group; Heredity; 134; 3-4; 2-2025; 186-199
0018-067X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/280532
identifier_str_mv Cappa, Eduardo Pablo; Chen, Charles; Klutsch, Jennifer G.; Sebastian Azcona, Jaime; Ratcliffe, Blaise; et al.; Revealing stable SNPs and genomic prediction insights across environments enhance breeding strategies of productivity, defense, and climate-adaptability traits in white spruce; Nature Publishing Group; Heredity; 134; 3-4; 2-2025; 186-199
0018-067X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41437-025-00747-z
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41437-025-00747-z
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature Publishing Group
publisher.none.fl_str_mv Nature Publishing Group
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1856403132692561920
score 13.106097