Physico-chemical treatment for the degradation of cyanotoxins with emphasis on drinking water treatment - How far have we come?

Autores
Kumar, Pratik; Hegde, Krishnamoorthy; Brar, Satinder Kaur; Cledón, Maximiliano; Kermanshahi Pour, Azadeh
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Over the years, various physicochemical treatment processes, such as photocatalysis, membrane technology, ozonolysis and chlorination have been tested at laboratory and pilot scale for the treatment of various cyanotoxins. Most of these treatment processes are also being commonly practiced in a drinking water treatment plants (DWTPs). However, the degree of treatment widely varies among cyanotoxin variants and is mainly governed by the source water characteristics, operational parameters (temperature, pH, cyanotoxin level) which changes continuously in a DWTPs. Other common elements present in raw water, such as natural organic matter (NOMs), residual nutrients and metal ions shows competitive behaviour with the cyanotoxins. Thus, a high demand in input energy is needed for unit operations, such as photocatalysis, reverse osmosis membrane and excess chemical requirement in terms of ozone, permanganate and chlorine (for ozonation and chlorination) which can breach the guidelines and increase the toxicity level. This review provides an insight into the effectiveness of major physico-chemical operations from simple to the advanced treatment level for the removal of different cyanotoxins along with their limitations and challenges in a DWTP. The goal of this review is to provide information on the possible reaction mechanism involved in the cyanotoxin treatment, accounting mainly for the toxicity, modifications in the process that happened over the years and the process feasibility. In future, hybrid technique assisted by UV, peroxides, among others promises to assist photocatalytic, ozonation and chlorination to undergo efficient cyanotoxin removal with reduced toxicity level. Also, persistence cyanotoxins, such as anatoxin and saxitoxin need further study.
Fil: Kumar, Pratik. Université du Québec a Montreal; Canadá
Fil: Hegde, Krishnamoorthy. Université du Québec a Montreal; Canadá
Fil: Brar, Satinder Kaur. Université du Québec a Montreal; Canadá
Fil: Cledón, Maximiliano. Universidad Nacional del Comahue. Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos "Almirante Storni". - Provincia de Río Negro. Ministerio de Agricultura, Ganadería y Pesca. Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos "Almirante Storni". Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Centro Nacional Patagónico. Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos "Almirante Storni"; Argentina
Fil: Kermanshahi Pour, Azadeh. Dalhousie University Halifax; Canadá
Materia
PHYSICO-CHEMICAL TREATMENT
CYANOTOXIN
REACTION PATHWAY
OXIDATION
DRINKING WATER
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/118081

id CONICETDig_75d127d4d6fd5870b1e0bbbe45c93a6b
oai_identifier_str oai:ri.conicet.gov.ar:11336/118081
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Physico-chemical treatment for the degradation of cyanotoxins with emphasis on drinking water treatment - How far have we come?Kumar, PratikHegde, KrishnamoorthyBrar, Satinder KaurCledón, MaximilianoKermanshahi Pour, AzadehPHYSICO-CHEMICAL TREATMENTCYANOTOXINREACTION PATHWAYOXIDATIONDRINKING WATERhttps://purl.org/becyt/ford/2.8https://purl.org/becyt/ford/2Over the years, various physicochemical treatment processes, such as photocatalysis, membrane technology, ozonolysis and chlorination have been tested at laboratory and pilot scale for the treatment of various cyanotoxins. Most of these treatment processes are also being commonly practiced in a drinking water treatment plants (DWTPs). However, the degree of treatment widely varies among cyanotoxin variants and is mainly governed by the source water characteristics, operational parameters (temperature, pH, cyanotoxin level) which changes continuously in a DWTPs. Other common elements present in raw water, such as natural organic matter (NOMs), residual nutrients and metal ions shows competitive behaviour with the cyanotoxins. Thus, a high demand in input energy is needed for unit operations, such as photocatalysis, reverse osmosis membrane and excess chemical requirement in terms of ozone, permanganate and chlorine (for ozonation and chlorination) which can breach the guidelines and increase the toxicity level. This review provides an insight into the effectiveness of major physico-chemical operations from simple to the advanced treatment level for the removal of different cyanotoxins along with their limitations and challenges in a DWTP. The goal of this review is to provide information on the possible reaction mechanism involved in the cyanotoxin treatment, accounting mainly for the toxicity, modifications in the process that happened over the years and the process feasibility. In future, hybrid technique assisted by UV, peroxides, among others promises to assist photocatalytic, ozonation and chlorination to undergo efficient cyanotoxin removal with reduced toxicity level. Also, persistence cyanotoxins, such as anatoxin and saxitoxin need further study.Fil: Kumar, Pratik. Université du Québec a Montreal; CanadáFil: Hegde, Krishnamoorthy. Université du Québec a Montreal; CanadáFil: Brar, Satinder Kaur. Université du Québec a Montreal; CanadáFil: Cledón, Maximiliano. Universidad Nacional del Comahue. Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos "Almirante Storni". - Provincia de Río Negro. Ministerio de Agricultura, Ganadería y Pesca. Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos "Almirante Storni". Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Centro Nacional Patagónico. Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos "Almirante Storni"; ArgentinaFil: Kermanshahi Pour, Azadeh. Dalhousie University Halifax; CanadáElsevier2018-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/118081Kumar, Pratik; Hegde, Krishnamoorthy; Brar, Satinder Kaur; Cledón, Maximiliano; Kermanshahi Pour, Azadeh; Physico-chemical treatment for the degradation of cyanotoxins with emphasis on drinking water treatment - How far have we come?; Elsevier; Journal of Environmental Chemical Engineering; 6; 4; 8-2018; 5369-53882213-3437CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jece.2018.08.032info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S2213343718304792info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:41:55Zoai:ri.conicet.gov.ar:11336/118081instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:41:56.227CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Physico-chemical treatment for the degradation of cyanotoxins with emphasis on drinking water treatment - How far have we come?
title Physico-chemical treatment for the degradation of cyanotoxins with emphasis on drinking water treatment - How far have we come?
spellingShingle Physico-chemical treatment for the degradation of cyanotoxins with emphasis on drinking water treatment - How far have we come?
Kumar, Pratik
PHYSICO-CHEMICAL TREATMENT
CYANOTOXIN
REACTION PATHWAY
OXIDATION
DRINKING WATER
title_short Physico-chemical treatment for the degradation of cyanotoxins with emphasis on drinking water treatment - How far have we come?
title_full Physico-chemical treatment for the degradation of cyanotoxins with emphasis on drinking water treatment - How far have we come?
title_fullStr Physico-chemical treatment for the degradation of cyanotoxins with emphasis on drinking water treatment - How far have we come?
title_full_unstemmed Physico-chemical treatment for the degradation of cyanotoxins with emphasis on drinking water treatment - How far have we come?
title_sort Physico-chemical treatment for the degradation of cyanotoxins with emphasis on drinking water treatment - How far have we come?
dc.creator.none.fl_str_mv Kumar, Pratik
Hegde, Krishnamoorthy
Brar, Satinder Kaur
Cledón, Maximiliano
Kermanshahi Pour, Azadeh
author Kumar, Pratik
author_facet Kumar, Pratik
Hegde, Krishnamoorthy
Brar, Satinder Kaur
Cledón, Maximiliano
Kermanshahi Pour, Azadeh
author_role author
author2 Hegde, Krishnamoorthy
Brar, Satinder Kaur
Cledón, Maximiliano
Kermanshahi Pour, Azadeh
author2_role author
author
author
author
dc.subject.none.fl_str_mv PHYSICO-CHEMICAL TREATMENT
CYANOTOXIN
REACTION PATHWAY
OXIDATION
DRINKING WATER
topic PHYSICO-CHEMICAL TREATMENT
CYANOTOXIN
REACTION PATHWAY
OXIDATION
DRINKING WATER
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.8
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Over the years, various physicochemical treatment processes, such as photocatalysis, membrane technology, ozonolysis and chlorination have been tested at laboratory and pilot scale for the treatment of various cyanotoxins. Most of these treatment processes are also being commonly practiced in a drinking water treatment plants (DWTPs). However, the degree of treatment widely varies among cyanotoxin variants and is mainly governed by the source water characteristics, operational parameters (temperature, pH, cyanotoxin level) which changes continuously in a DWTPs. Other common elements present in raw water, such as natural organic matter (NOMs), residual nutrients and metal ions shows competitive behaviour with the cyanotoxins. Thus, a high demand in input energy is needed for unit operations, such as photocatalysis, reverse osmosis membrane and excess chemical requirement in terms of ozone, permanganate and chlorine (for ozonation and chlorination) which can breach the guidelines and increase the toxicity level. This review provides an insight into the effectiveness of major physico-chemical operations from simple to the advanced treatment level for the removal of different cyanotoxins along with their limitations and challenges in a DWTP. The goal of this review is to provide information on the possible reaction mechanism involved in the cyanotoxin treatment, accounting mainly for the toxicity, modifications in the process that happened over the years and the process feasibility. In future, hybrid technique assisted by UV, peroxides, among others promises to assist photocatalytic, ozonation and chlorination to undergo efficient cyanotoxin removal with reduced toxicity level. Also, persistence cyanotoxins, such as anatoxin and saxitoxin need further study.
Fil: Kumar, Pratik. Université du Québec a Montreal; Canadá
Fil: Hegde, Krishnamoorthy. Université du Québec a Montreal; Canadá
Fil: Brar, Satinder Kaur. Université du Québec a Montreal; Canadá
Fil: Cledón, Maximiliano. Universidad Nacional del Comahue. Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos "Almirante Storni". - Provincia de Río Negro. Ministerio de Agricultura, Ganadería y Pesca. Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos "Almirante Storni". Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Centro Nacional Patagónico. Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos "Almirante Storni"; Argentina
Fil: Kermanshahi Pour, Azadeh. Dalhousie University Halifax; Canadá
description Over the years, various physicochemical treatment processes, such as photocatalysis, membrane technology, ozonolysis and chlorination have been tested at laboratory and pilot scale for the treatment of various cyanotoxins. Most of these treatment processes are also being commonly practiced in a drinking water treatment plants (DWTPs). However, the degree of treatment widely varies among cyanotoxin variants and is mainly governed by the source water characteristics, operational parameters (temperature, pH, cyanotoxin level) which changes continuously in a DWTPs. Other common elements present in raw water, such as natural organic matter (NOMs), residual nutrients and metal ions shows competitive behaviour with the cyanotoxins. Thus, a high demand in input energy is needed for unit operations, such as photocatalysis, reverse osmosis membrane and excess chemical requirement in terms of ozone, permanganate and chlorine (for ozonation and chlorination) which can breach the guidelines and increase the toxicity level. This review provides an insight into the effectiveness of major physico-chemical operations from simple to the advanced treatment level for the removal of different cyanotoxins along with their limitations and challenges in a DWTP. The goal of this review is to provide information on the possible reaction mechanism involved in the cyanotoxin treatment, accounting mainly for the toxicity, modifications in the process that happened over the years and the process feasibility. In future, hybrid technique assisted by UV, peroxides, among others promises to assist photocatalytic, ozonation and chlorination to undergo efficient cyanotoxin removal with reduced toxicity level. Also, persistence cyanotoxins, such as anatoxin and saxitoxin need further study.
publishDate 2018
dc.date.none.fl_str_mv 2018-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/118081
Kumar, Pratik; Hegde, Krishnamoorthy; Brar, Satinder Kaur; Cledón, Maximiliano; Kermanshahi Pour, Azadeh; Physico-chemical treatment for the degradation of cyanotoxins with emphasis on drinking water treatment - How far have we come?; Elsevier; Journal of Environmental Chemical Engineering; 6; 4; 8-2018; 5369-5388
2213-3437
CONICET Digital
CONICET
url http://hdl.handle.net/11336/118081
identifier_str_mv Kumar, Pratik; Hegde, Krishnamoorthy; Brar, Satinder Kaur; Cledón, Maximiliano; Kermanshahi Pour, Azadeh; Physico-chemical treatment for the degradation of cyanotoxins with emphasis on drinking water treatment - How far have we come?; Elsevier; Journal of Environmental Chemical Engineering; 6; 4; 8-2018; 5369-5388
2213-3437
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jece.2018.08.032
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S2213343718304792
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613322048012288
score 13.070432