Irreducibility criteria for reciprocal polynomials and applications
- Autores
- Cafure, Antonio Artemio; Cesaratto, Eda
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present criteria for determining irreducibility of reciprocal polynomials over the field of rational numbers. We also obtain some combinatorial results concerning the irreducibility of reciprocal polynomials. As a consequence of our approach, we are able to deal with other problems such as factorization properties of Chebyshev polynomials of the first and second kind and with the classical problems of computing minimal polynomials of algebraic values of trigonometric functions.
Fil: Cafure, Antonio Artemio. Universidad de Buenos Aires. Ciclo Básico Común; Argentina. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cesaratto, Eda. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Reciprocal Polynomials
Irreducibility Over Q
Chebyshev Polynomials - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/54414
Ver los metadatos del registro completo
id |
CONICETDig_729cb3f928f6b2f5d57dd802b43f1ced |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/54414 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Irreducibility criteria for reciprocal polynomials and applicationsCafure, Antonio ArtemioCesaratto, EdaReciprocal PolynomialsIrreducibility Over QChebyshev Polynomialshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We present criteria for determining irreducibility of reciprocal polynomials over the field of rational numbers. We also obtain some combinatorial results concerning the irreducibility of reciprocal polynomials. As a consequence of our approach, we are able to deal with other problems such as factorization properties of Chebyshev polynomials of the first and second kind and with the classical problems of computing minimal polynomials of algebraic values of trigonometric functions.Fil: Cafure, Antonio Artemio. Universidad de Buenos Aires. Ciclo Básico Común; Argentina. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cesaratto, Eda. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaMathematical Association of America2017-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/54414Cafure, Antonio Artemio; Cesaratto, Eda; Irreducibility criteria for reciprocal polynomials and applications; Mathematical Association of America; The American Mathematical Monthly; 124; 1; 1-2017; 37-530002-98901930-0972CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4169/amer.math.monthly.124.1.37info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.4169/amer.math.monthly.124.1.37info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:31Zoai:ri.conicet.gov.ar:11336/54414instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:31.423CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Irreducibility criteria for reciprocal polynomials and applications |
title |
Irreducibility criteria for reciprocal polynomials and applications |
spellingShingle |
Irreducibility criteria for reciprocal polynomials and applications Cafure, Antonio Artemio Reciprocal Polynomials Irreducibility Over Q Chebyshev Polynomials |
title_short |
Irreducibility criteria for reciprocal polynomials and applications |
title_full |
Irreducibility criteria for reciprocal polynomials and applications |
title_fullStr |
Irreducibility criteria for reciprocal polynomials and applications |
title_full_unstemmed |
Irreducibility criteria for reciprocal polynomials and applications |
title_sort |
Irreducibility criteria for reciprocal polynomials and applications |
dc.creator.none.fl_str_mv |
Cafure, Antonio Artemio Cesaratto, Eda |
author |
Cafure, Antonio Artemio |
author_facet |
Cafure, Antonio Artemio Cesaratto, Eda |
author_role |
author |
author2 |
Cesaratto, Eda |
author2_role |
author |
dc.subject.none.fl_str_mv |
Reciprocal Polynomials Irreducibility Over Q Chebyshev Polynomials |
topic |
Reciprocal Polynomials Irreducibility Over Q Chebyshev Polynomials |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present criteria for determining irreducibility of reciprocal polynomials over the field of rational numbers. We also obtain some combinatorial results concerning the irreducibility of reciprocal polynomials. As a consequence of our approach, we are able to deal with other problems such as factorization properties of Chebyshev polynomials of the first and second kind and with the classical problems of computing minimal polynomials of algebraic values of trigonometric functions. Fil: Cafure, Antonio Artemio. Universidad de Buenos Aires. Ciclo Básico Común; Argentina. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Cesaratto, Eda. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We present criteria for determining irreducibility of reciprocal polynomials over the field of rational numbers. We also obtain some combinatorial results concerning the irreducibility of reciprocal polynomials. As a consequence of our approach, we are able to deal with other problems such as factorization properties of Chebyshev polynomials of the first and second kind and with the classical problems of computing minimal polynomials of algebraic values of trigonometric functions. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/54414 Cafure, Antonio Artemio; Cesaratto, Eda; Irreducibility criteria for reciprocal polynomials and applications; Mathematical Association of America; The American Mathematical Monthly; 124; 1; 1-2017; 37-53 0002-9890 1930-0972 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/54414 |
identifier_str_mv |
Cafure, Antonio Artemio; Cesaratto, Eda; Irreducibility criteria for reciprocal polynomials and applications; Mathematical Association of America; The American Mathematical Monthly; 124; 1; 1-2017; 37-53 0002-9890 1930-0972 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.4169/amer.math.monthly.124.1.37 info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.4169/amer.math.monthly.124.1.37 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Mathematical Association of America |
publisher.none.fl_str_mv |
Mathematical Association of America |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268977604067328 |
score |
13.13397 |