Irreducibility criteria for reciprocal polynomials and applications

Autores
Cafure, Antonio Artemio; Cesaratto, Eda
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present criteria for determining irreducibility of reciprocal polynomials over the field of rational numbers. We also obtain some combinatorial results concerning the irreducibility of reciprocal polynomials. As a consequence of our approach, we are able to deal with other problems such as factorization properties of Chebyshev polynomials of the first and second kind and with the classical problems of computing minimal polynomials of algebraic values of trigonometric functions.
Fil: Cafure, Antonio Artemio. Universidad de Buenos Aires. Ciclo Básico Común; Argentina. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cesaratto, Eda. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Reciprocal Polynomials
Irreducibility Over Q
Chebyshev Polynomials
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/54414

id CONICETDig_729cb3f928f6b2f5d57dd802b43f1ced
oai_identifier_str oai:ri.conicet.gov.ar:11336/54414
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Irreducibility criteria for reciprocal polynomials and applicationsCafure, Antonio ArtemioCesaratto, EdaReciprocal PolynomialsIrreducibility Over QChebyshev Polynomialshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We present criteria for determining irreducibility of reciprocal polynomials over the field of rational numbers. We also obtain some combinatorial results concerning the irreducibility of reciprocal polynomials. As a consequence of our approach, we are able to deal with other problems such as factorization properties of Chebyshev polynomials of the first and second kind and with the classical problems of computing minimal polynomials of algebraic values of trigonometric functions.Fil: Cafure, Antonio Artemio. Universidad de Buenos Aires. Ciclo Básico Común; Argentina. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cesaratto, Eda. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaMathematical Association of America2017-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/54414Cafure, Antonio Artemio; Cesaratto, Eda; Irreducibility criteria for reciprocal polynomials and applications; Mathematical Association of America; The American Mathematical Monthly; 124; 1; 1-2017; 37-530002-98901930-0972CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4169/amer.math.monthly.124.1.37info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.4169/amer.math.monthly.124.1.37info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:31Zoai:ri.conicet.gov.ar:11336/54414instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:31.423CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Irreducibility criteria for reciprocal polynomials and applications
title Irreducibility criteria for reciprocal polynomials and applications
spellingShingle Irreducibility criteria for reciprocal polynomials and applications
Cafure, Antonio Artemio
Reciprocal Polynomials
Irreducibility Over Q
Chebyshev Polynomials
title_short Irreducibility criteria for reciprocal polynomials and applications
title_full Irreducibility criteria for reciprocal polynomials and applications
title_fullStr Irreducibility criteria for reciprocal polynomials and applications
title_full_unstemmed Irreducibility criteria for reciprocal polynomials and applications
title_sort Irreducibility criteria for reciprocal polynomials and applications
dc.creator.none.fl_str_mv Cafure, Antonio Artemio
Cesaratto, Eda
author Cafure, Antonio Artemio
author_facet Cafure, Antonio Artemio
Cesaratto, Eda
author_role author
author2 Cesaratto, Eda
author2_role author
dc.subject.none.fl_str_mv Reciprocal Polynomials
Irreducibility Over Q
Chebyshev Polynomials
topic Reciprocal Polynomials
Irreducibility Over Q
Chebyshev Polynomials
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present criteria for determining irreducibility of reciprocal polynomials over the field of rational numbers. We also obtain some combinatorial results concerning the irreducibility of reciprocal polynomials. As a consequence of our approach, we are able to deal with other problems such as factorization properties of Chebyshev polynomials of the first and second kind and with the classical problems of computing minimal polynomials of algebraic values of trigonometric functions.
Fil: Cafure, Antonio Artemio. Universidad de Buenos Aires. Ciclo Básico Común; Argentina. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cesaratto, Eda. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description We present criteria for determining irreducibility of reciprocal polynomials over the field of rational numbers. We also obtain some combinatorial results concerning the irreducibility of reciprocal polynomials. As a consequence of our approach, we are able to deal with other problems such as factorization properties of Chebyshev polynomials of the first and second kind and with the classical problems of computing minimal polynomials of algebraic values of trigonometric functions.
publishDate 2017
dc.date.none.fl_str_mv 2017-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/54414
Cafure, Antonio Artemio; Cesaratto, Eda; Irreducibility criteria for reciprocal polynomials and applications; Mathematical Association of America; The American Mathematical Monthly; 124; 1; 1-2017; 37-53
0002-9890
1930-0972
CONICET Digital
CONICET
url http://hdl.handle.net/11336/54414
identifier_str_mv Cafure, Antonio Artemio; Cesaratto, Eda; Irreducibility criteria for reciprocal polynomials and applications; Mathematical Association of America; The American Mathematical Monthly; 124; 1; 1-2017; 37-53
0002-9890
1930-0972
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.4169/amer.math.monthly.124.1.37
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.4169/amer.math.monthly.124.1.37
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Mathematical Association of America
publisher.none.fl_str_mv Mathematical Association of America
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268977604067328
score 13.13397