Time-Course Analysis of Cyanobacterium Transcriptome: Detecting Oscillatory Genes

Autores
Layana, Carla; Diambra, Luis Anibal
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The microarray technique allows the simultaneous measurements of the expression levels of thousands of mRNAs. By mining these data one can identify the dynamics of the gene expression time series. The detection of genes that are periodically expressed is an important step that allows us to study the regulatory mechanisms associated with the circadian cycle. The problem of finding periodicity in biological time series poses many challenges. Such challenge occurs due to the fact that the observed time series usually exhibit non-idealities, such as noise, short length, outliers and unevenly sampled time points. Consequently, the method for finding periodicity should preferably be robust against such anomalies in the data. In this paper, we propose a general and robust procedure for identifying genes with a periodic signature at a given significance level. This identification method is based on autoregressive models and the information theory. By using simulated data we show that the suggested method is capable of identifying rhythmic profiles even in the presence of noise and when the number of data points is small. By recourse of our analysis, we uncover the circadian rhythmic patterns underlying the gene expression profiles from Cyanobacterium Synechocystis.
Fil: Layana, Carla. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina
Fil: Diambra, Luis Anibal. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
CIRCADIAN RHYTHMS
CYANOBACTERIUM
BIOINFORMATICS
MICROARRAYS ANALYSIS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/95759

id CONICETDig_74128294922328275ffa6f233d746f99
oai_identifier_str oai:ri.conicet.gov.ar:11336/95759
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Time-Course Analysis of Cyanobacterium Transcriptome: Detecting Oscillatory GenesLayana, CarlaDiambra, Luis AnibalCIRCADIAN RHYTHMSCYANOBACTERIUMBIOINFORMATICSMICROARRAYS ANALYSIShttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The microarray technique allows the simultaneous measurements of the expression levels of thousands of mRNAs. By mining these data one can identify the dynamics of the gene expression time series. The detection of genes that are periodically expressed is an important step that allows us to study the regulatory mechanisms associated with the circadian cycle. The problem of finding periodicity in biological time series poses many challenges. Such challenge occurs due to the fact that the observed time series usually exhibit non-idealities, such as noise, short length, outliers and unevenly sampled time points. Consequently, the method for finding periodicity should preferably be robust against such anomalies in the data. In this paper, we propose a general and robust procedure for identifying genes with a periodic signature at a given significance level. This identification method is based on autoregressive models and the information theory. By using simulated data we show that the suggested method is capable of identifying rhythmic profiles even in the presence of noise and when the number of data points is small. By recourse of our analysis, we uncover the circadian rhythmic patterns underlying the gene expression profiles from Cyanobacterium Synechocystis.Fil: Layana, Carla. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; ArgentinaFil: Diambra, Luis Anibal. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaPublic Library of Science2011-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/95759Layana, Carla; Diambra, Luis Anibal; Time-Course Analysis of Cyanobacterium Transcriptome: Detecting Oscillatory Genes; Public Library of Science; Plos One; 6; 10; 10-2011; 1-101932-6203CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0026291info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0026291info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:57Zoai:ri.conicet.gov.ar:11336/95759instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:57.749CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Time-Course Analysis of Cyanobacterium Transcriptome: Detecting Oscillatory Genes
title Time-Course Analysis of Cyanobacterium Transcriptome: Detecting Oscillatory Genes
spellingShingle Time-Course Analysis of Cyanobacterium Transcriptome: Detecting Oscillatory Genes
Layana, Carla
CIRCADIAN RHYTHMS
CYANOBACTERIUM
BIOINFORMATICS
MICROARRAYS ANALYSIS
title_short Time-Course Analysis of Cyanobacterium Transcriptome: Detecting Oscillatory Genes
title_full Time-Course Analysis of Cyanobacterium Transcriptome: Detecting Oscillatory Genes
title_fullStr Time-Course Analysis of Cyanobacterium Transcriptome: Detecting Oscillatory Genes
title_full_unstemmed Time-Course Analysis of Cyanobacterium Transcriptome: Detecting Oscillatory Genes
title_sort Time-Course Analysis of Cyanobacterium Transcriptome: Detecting Oscillatory Genes
dc.creator.none.fl_str_mv Layana, Carla
Diambra, Luis Anibal
author Layana, Carla
author_facet Layana, Carla
Diambra, Luis Anibal
author_role author
author2 Diambra, Luis Anibal
author2_role author
dc.subject.none.fl_str_mv CIRCADIAN RHYTHMS
CYANOBACTERIUM
BIOINFORMATICS
MICROARRAYS ANALYSIS
topic CIRCADIAN RHYTHMS
CYANOBACTERIUM
BIOINFORMATICS
MICROARRAYS ANALYSIS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The microarray technique allows the simultaneous measurements of the expression levels of thousands of mRNAs. By mining these data one can identify the dynamics of the gene expression time series. The detection of genes that are periodically expressed is an important step that allows us to study the regulatory mechanisms associated with the circadian cycle. The problem of finding periodicity in biological time series poses many challenges. Such challenge occurs due to the fact that the observed time series usually exhibit non-idealities, such as noise, short length, outliers and unevenly sampled time points. Consequently, the method for finding periodicity should preferably be robust against such anomalies in the data. In this paper, we propose a general and robust procedure for identifying genes with a periodic signature at a given significance level. This identification method is based on autoregressive models and the information theory. By using simulated data we show that the suggested method is capable of identifying rhythmic profiles even in the presence of noise and when the number of data points is small. By recourse of our analysis, we uncover the circadian rhythmic patterns underlying the gene expression profiles from Cyanobacterium Synechocystis.
Fil: Layana, Carla. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina
Fil: Diambra, Luis Anibal. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description The microarray technique allows the simultaneous measurements of the expression levels of thousands of mRNAs. By mining these data one can identify the dynamics of the gene expression time series. The detection of genes that are periodically expressed is an important step that allows us to study the regulatory mechanisms associated with the circadian cycle. The problem of finding periodicity in biological time series poses many challenges. Such challenge occurs due to the fact that the observed time series usually exhibit non-idealities, such as noise, short length, outliers and unevenly sampled time points. Consequently, the method for finding periodicity should preferably be robust against such anomalies in the data. In this paper, we propose a general and robust procedure for identifying genes with a periodic signature at a given significance level. This identification method is based on autoregressive models and the information theory. By using simulated data we show that the suggested method is capable of identifying rhythmic profiles even in the presence of noise and when the number of data points is small. By recourse of our analysis, we uncover the circadian rhythmic patterns underlying the gene expression profiles from Cyanobacterium Synechocystis.
publishDate 2011
dc.date.none.fl_str_mv 2011-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/95759
Layana, Carla; Diambra, Luis Anibal; Time-Course Analysis of Cyanobacterium Transcriptome: Detecting Oscillatory Genes; Public Library of Science; Plos One; 6; 10; 10-2011; 1-10
1932-6203
CONICET Digital
CONICET
url http://hdl.handle.net/11336/95759
identifier_str_mv Layana, Carla; Diambra, Luis Anibal; Time-Course Analysis of Cyanobacterium Transcriptome: Detecting Oscillatory Genes; Public Library of Science; Plos One; 6; 10; 10-2011; 1-10
1932-6203
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0026291
info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0026291
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Public Library of Science
publisher.none.fl_str_mv Public Library of Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270100815609856
score 13.13397