Absolute continuity of self-similar measures, their projections and convolutions
- Autores
- Shmerkin, Pablo Sebastian; Solomyak, Boris
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We show that in many parametrized families of self-similar measures, their projections, and their convolutions, the set of parameters for which the measure fails to be absolutely continuous is very small—of co-dimension at least 1 in parameter space. This complements an active line of research concerning similar questions for dimension. Moreover, we establish some regularity of the density outside this small exceptional set, which applies in particular to Bernoulli convolutions; along the way, we prove some new results about the dimensions of self-similar measures and the absolute continuity of the convolution of two measures. As a concrete application, we obtain a very strong version of Marstrand’s projection theorem for planar self-similar sets.
Fil: Shmerkin, Pablo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina
Fil: Solomyak, Boris. University of Washington; Estados Unidos - Materia
-
ABSOLUTE CONTINUITY
SELF-SIMILAR MEASURES
HAUSDORFF DIMENSION
CONVOLUTIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/90812
Ver los metadatos del registro completo
id |
CONICETDig_73b088b7efb3a61e8765df6ad508907a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/90812 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Absolute continuity of self-similar measures, their projections and convolutionsShmerkin, Pablo SebastianSolomyak, BorisABSOLUTE CONTINUITYSELF-SIMILAR MEASURESHAUSDORFF DIMENSIONCONVOLUTIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We show that in many parametrized families of self-similar measures, their projections, and their convolutions, the set of parameters for which the measure fails to be absolutely continuous is very small—of co-dimension at least 1 in parameter space. This complements an active line of research concerning similar questions for dimension. Moreover, we establish some regularity of the density outside this small exceptional set, which applies in particular to Bernoulli convolutions; along the way, we prove some new results about the dimensions of self-similar measures and the absolute continuity of the convolution of two measures. As a concrete application, we obtain a very strong version of Marstrand’s projection theorem for planar self-similar sets.Fil: Shmerkin, Pablo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; ArgentinaFil: Solomyak, Boris. University of Washington; Estados UnidosAmerican Mathematical Society2016-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/90812Shmerkin, Pablo Sebastian; Solomyak, Boris; Absolute continuity of self-similar measures, their projections and convolutions; American Mathematical Society; Transactions Of The American Mathematical Society; 368; 7; 7-2016; 5125-51510002-9947CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/tran/2016-368-07/S0002-9947-2015-06696-3/info:eu-repo/semantics/altIdentifier/doi/10.1090/tran6696info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:42:33Zoai:ri.conicet.gov.ar:11336/90812instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:42:34.204CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Absolute continuity of self-similar measures, their projections and convolutions |
title |
Absolute continuity of self-similar measures, their projections and convolutions |
spellingShingle |
Absolute continuity of self-similar measures, their projections and convolutions Shmerkin, Pablo Sebastian ABSOLUTE CONTINUITY SELF-SIMILAR MEASURES HAUSDORFF DIMENSION CONVOLUTIONS |
title_short |
Absolute continuity of self-similar measures, their projections and convolutions |
title_full |
Absolute continuity of self-similar measures, their projections and convolutions |
title_fullStr |
Absolute continuity of self-similar measures, their projections and convolutions |
title_full_unstemmed |
Absolute continuity of self-similar measures, their projections and convolutions |
title_sort |
Absolute continuity of self-similar measures, their projections and convolutions |
dc.creator.none.fl_str_mv |
Shmerkin, Pablo Sebastian Solomyak, Boris |
author |
Shmerkin, Pablo Sebastian |
author_facet |
Shmerkin, Pablo Sebastian Solomyak, Boris |
author_role |
author |
author2 |
Solomyak, Boris |
author2_role |
author |
dc.subject.none.fl_str_mv |
ABSOLUTE CONTINUITY SELF-SIMILAR MEASURES HAUSDORFF DIMENSION CONVOLUTIONS |
topic |
ABSOLUTE CONTINUITY SELF-SIMILAR MEASURES HAUSDORFF DIMENSION CONVOLUTIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We show that in many parametrized families of self-similar measures, their projections, and their convolutions, the set of parameters for which the measure fails to be absolutely continuous is very small—of co-dimension at least 1 in parameter space. This complements an active line of research concerning similar questions for dimension. Moreover, we establish some regularity of the density outside this small exceptional set, which applies in particular to Bernoulli convolutions; along the way, we prove some new results about the dimensions of self-similar measures and the absolute continuity of the convolution of two measures. As a concrete application, we obtain a very strong version of Marstrand’s projection theorem for planar self-similar sets. Fil: Shmerkin, Pablo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina Fil: Solomyak, Boris. University of Washington; Estados Unidos |
description |
We show that in many parametrized families of self-similar measures, their projections, and their convolutions, the set of parameters for which the measure fails to be absolutely continuous is very small—of co-dimension at least 1 in parameter space. This complements an active line of research concerning similar questions for dimension. Moreover, we establish some regularity of the density outside this small exceptional set, which applies in particular to Bernoulli convolutions; along the way, we prove some new results about the dimensions of self-similar measures and the absolute continuity of the convolution of two measures. As a concrete application, we obtain a very strong version of Marstrand’s projection theorem for planar self-similar sets. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/90812 Shmerkin, Pablo Sebastian; Solomyak, Boris; Absolute continuity of self-similar measures, their projections and convolutions; American Mathematical Society; Transactions Of The American Mathematical Society; 368; 7; 7-2016; 5125-5151 0002-9947 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/90812 |
identifier_str_mv |
Shmerkin, Pablo Sebastian; Solomyak, Boris; Absolute continuity of self-similar measures, their projections and convolutions; American Mathematical Society; Transactions Of The American Mathematical Society; 368; 7; 7-2016; 5125-5151 0002-9947 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/tran/2016-368-07/S0002-9947-2015-06696-3/ info:eu-repo/semantics/altIdentifier/doi/10.1090/tran6696 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613340367683584 |
score |
13.070432 |