On the Exceptional Set for Absolute Continuity of Bernoulli Convolutions
- Autores
- Shmerkin, Pablo Sebastian
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove that the set of exceptional λ∈(1/2,1)λ∈(1/2,1) such that the associated Bernoulli convolution is singular has zero Hausdorff dimension, and likewise for biased Bernoulli convolutions, with the exceptional set independent of the bias. This improves previous results by Erdös, Kahane, Solomyak, Peres and Schlag, and Hochman. A theorem of this kind is also obtained for convolutions of homogeneous self-similar measures. The proofs are very short, and rely on old and new results on the dimensions of self-similar measures and their convolutions, and the decay of their Fourier transform.
Fil: Shmerkin, Pablo Sebastian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Bernoulli Convolutions
Self-Similarity
Absolute Continuity - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/35642
Ver los metadatos del registro completo
id |
CONICETDig_1c704f65edccfb71f7783c1929d20ddb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/35642 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the Exceptional Set for Absolute Continuity of Bernoulli ConvolutionsShmerkin, Pablo SebastianBernoulli ConvolutionsSelf-SimilarityAbsolute Continuityhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove that the set of exceptional λ∈(1/2,1)λ∈(1/2,1) such that the associated Bernoulli convolution is singular has zero Hausdorff dimension, and likewise for biased Bernoulli convolutions, with the exceptional set independent of the bias. This improves previous results by Erdös, Kahane, Solomyak, Peres and Schlag, and Hochman. A theorem of this kind is also obtained for convolutions of homogeneous self-similar measures. The proofs are very short, and rely on old and new results on the dimensions of self-similar measures and their convolutions, and the decay of their Fourier transform.Fil: Shmerkin, Pablo Sebastian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer2014-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/35642Shmerkin, Pablo Sebastian; On the Exceptional Set for Absolute Continuity of Bernoulli Convolutions; Springer; Geometric And Functional Analysis; 24; 3; 6-2014; 946-9581016-443X1420-8970CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs00039-014-0285-4info:eu-repo/semantics/altIdentifier/doi/10.1007/s00039-014-0285-4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:41:23Zoai:ri.conicet.gov.ar:11336/35642instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:41:23.281CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the Exceptional Set for Absolute Continuity of Bernoulli Convolutions |
title |
On the Exceptional Set for Absolute Continuity of Bernoulli Convolutions |
spellingShingle |
On the Exceptional Set for Absolute Continuity of Bernoulli Convolutions Shmerkin, Pablo Sebastian Bernoulli Convolutions Self-Similarity Absolute Continuity |
title_short |
On the Exceptional Set for Absolute Continuity of Bernoulli Convolutions |
title_full |
On the Exceptional Set for Absolute Continuity of Bernoulli Convolutions |
title_fullStr |
On the Exceptional Set for Absolute Continuity of Bernoulli Convolutions |
title_full_unstemmed |
On the Exceptional Set for Absolute Continuity of Bernoulli Convolutions |
title_sort |
On the Exceptional Set for Absolute Continuity of Bernoulli Convolutions |
dc.creator.none.fl_str_mv |
Shmerkin, Pablo Sebastian |
author |
Shmerkin, Pablo Sebastian |
author_facet |
Shmerkin, Pablo Sebastian |
author_role |
author |
dc.subject.none.fl_str_mv |
Bernoulli Convolutions Self-Similarity Absolute Continuity |
topic |
Bernoulli Convolutions Self-Similarity Absolute Continuity |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We prove that the set of exceptional λ∈(1/2,1)λ∈(1/2,1) such that the associated Bernoulli convolution is singular has zero Hausdorff dimension, and likewise for biased Bernoulli convolutions, with the exceptional set independent of the bias. This improves previous results by Erdös, Kahane, Solomyak, Peres and Schlag, and Hochman. A theorem of this kind is also obtained for convolutions of homogeneous self-similar measures. The proofs are very short, and rely on old and new results on the dimensions of self-similar measures and their convolutions, and the decay of their Fourier transform. Fil: Shmerkin, Pablo Sebastian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We prove that the set of exceptional λ∈(1/2,1)λ∈(1/2,1) such that the associated Bernoulli convolution is singular has zero Hausdorff dimension, and likewise for biased Bernoulli convolutions, with the exceptional set independent of the bias. This improves previous results by Erdös, Kahane, Solomyak, Peres and Schlag, and Hochman. A theorem of this kind is also obtained for convolutions of homogeneous self-similar measures. The proofs are very short, and rely on old and new results on the dimensions of self-similar measures and their convolutions, and the decay of their Fourier transform. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/35642 Shmerkin, Pablo Sebastian; On the Exceptional Set for Absolute Continuity of Bernoulli Convolutions; Springer; Geometric And Functional Analysis; 24; 3; 6-2014; 946-958 1016-443X 1420-8970 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/35642 |
identifier_str_mv |
Shmerkin, Pablo Sebastian; On the Exceptional Set for Absolute Continuity of Bernoulli Convolutions; Springer; Geometric And Functional Analysis; 24; 3; 6-2014; 946-958 1016-443X 1420-8970 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs00039-014-0285-4 info:eu-repo/semantics/altIdentifier/doi/10.1007/s00039-014-0285-4 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614444438519808 |
score |
13.070432 |