Biodegradation of vegetable residues by polygalacturonase-agar using a trickle-bed bioreactor

Autores
Ramírez Tapias, Yuly Andrea; Rivero, Cintia Wanda; Giraldo Estrada, Catalina; Britos, Claudia Noelia; Trelles, Jorge Abel
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Bacterial pectinases degrade the pectic substances present in plant tissues and particularly, polygalacturonases catalyze the hydrolysis of α-(1,4) glycosidic bonds linking D-galacturonic acid units. In this study, polygalacturonase from Streptomyces halstedii ATCC 10897 was immobilized by the matrix entrapment technique using different thermogels. Bacteriological agar added with magnesium cation produced beads with a more stabilized microstructure for enzyme retention, monitored by oscillatory measurements of storage and loss modulus. Agar concentration and protein content were optimized to maximize protein entrapment, product conversion, and reaction yield. Results showed that the mixture at 10:90% (v/v) of protein (2 mg/mL) and agar (4% w/v) was the best immobilization condition to retain 91% of protein and hydrolyze 38% of pectin to allow the highest reaction yield (9.279 g/g) and increase stability up to 48 h of successive reactions. Agarose bead biocatalysts were used in a trickle-bed column operated with recirculation, and this bioreactor allowed the degradation of pear and cucumber residues by enzymatic liquefaction to enhance sugar content up to 15.33 and 9.35 mg/mL, respectively, and decrease viscosity by 92.3%. The scale-up of this process adds value to vegetable residues such as fructooligosaccharides or fermentable sugars, which become a sustainable source of fuels and chemicals.
Fil: Ramírez Tapias, Yuly Andrea. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Investigación en Biotecnología Sustentable; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rivero, Cintia Wanda. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Investigación en Biotecnología Sustentable; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Giraldo Estrada, Catalina. Universidad Eafit; Colombia
Fil: Britos, Claudia Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Investigación en Biotecnología Sustentable; Argentina
Fil: Trelles, Jorge Abel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Investigación en Biotecnología Sustentable; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
ENZYME IMMOBILIZATION
PACKED BED BIOREACTOR
PEAR AND CUCUMBER RESIDUES
SACCHARIFICATION
SCALE-UP
STREPTOMYCES HALSTEDII ATCC 10897
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/98852

id CONICETDig_72c538fbe80cdd98cd3999f689ad5e27
oai_identifier_str oai:ri.conicet.gov.ar:11336/98852
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Biodegradation of vegetable residues by polygalacturonase-agar using a trickle-bed bioreactorRamírez Tapias, Yuly AndreaRivero, Cintia WandaGiraldo Estrada, CatalinaBritos, Claudia NoeliaTrelles, Jorge AbelENZYME IMMOBILIZATIONPACKED BED BIOREACTORPEAR AND CUCUMBER RESIDUESSACCHARIFICATIONSCALE-UPSTREPTOMYCES HALSTEDII ATCC 10897https://purl.org/becyt/ford/2.8https://purl.org/becyt/ford/2Bacterial pectinases degrade the pectic substances present in plant tissues and particularly, polygalacturonases catalyze the hydrolysis of α-(1,4) glycosidic bonds linking D-galacturonic acid units. In this study, polygalacturonase from Streptomyces halstedii ATCC 10897 was immobilized by the matrix entrapment technique using different thermogels. Bacteriological agar added with magnesium cation produced beads with a more stabilized microstructure for enzyme retention, monitored by oscillatory measurements of storage and loss modulus. Agar concentration and protein content were optimized to maximize protein entrapment, product conversion, and reaction yield. Results showed that the mixture at 10:90% (v/v) of protein (2 mg/mL) and agar (4% w/v) was the best immobilization condition to retain 91% of protein and hydrolyze 38% of pectin to allow the highest reaction yield (9.279 g/g) and increase stability up to 48 h of successive reactions. Agarose bead biocatalysts were used in a trickle-bed column operated with recirculation, and this bioreactor allowed the degradation of pear and cucumber residues by enzymatic liquefaction to enhance sugar content up to 15.33 and 9.35 mg/mL, respectively, and decrease viscosity by 92.3%. The scale-up of this process adds value to vegetable residues such as fructooligosaccharides or fermentable sugars, which become a sustainable source of fuels and chemicals.Fil: Ramírez Tapias, Yuly Andrea. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Investigación en Biotecnología Sustentable; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rivero, Cintia Wanda. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Investigación en Biotecnología Sustentable; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Giraldo Estrada, Catalina. Universidad Eafit; ColombiaFil: Britos, Claudia Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Investigación en Biotecnología Sustentable; ArgentinaFil: Trelles, Jorge Abel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Investigación en Biotecnología Sustentable; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaInstitution of Chemical Engineers2018-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98852Ramírez Tapias, Yuly Andrea; Rivero, Cintia Wanda; Giraldo Estrada, Catalina; Britos, Claudia Noelia; Trelles, Jorge Abel; Biodegradation of vegetable residues by polygalacturonase-agar using a trickle-bed bioreactor; Institution of Chemical Engineers; Food and Bioproducts Processing; 111; 9-2018; 54-610960-3085CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.fbp.2018.06.006info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0960308518304243info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:37:04Zoai:ri.conicet.gov.ar:11336/98852instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:37:04.66CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Biodegradation of vegetable residues by polygalacturonase-agar using a trickle-bed bioreactor
title Biodegradation of vegetable residues by polygalacturonase-agar using a trickle-bed bioreactor
spellingShingle Biodegradation of vegetable residues by polygalacturonase-agar using a trickle-bed bioreactor
Ramírez Tapias, Yuly Andrea
ENZYME IMMOBILIZATION
PACKED BED BIOREACTOR
PEAR AND CUCUMBER RESIDUES
SACCHARIFICATION
SCALE-UP
STREPTOMYCES HALSTEDII ATCC 10897
title_short Biodegradation of vegetable residues by polygalacturonase-agar using a trickle-bed bioreactor
title_full Biodegradation of vegetable residues by polygalacturonase-agar using a trickle-bed bioreactor
title_fullStr Biodegradation of vegetable residues by polygalacturonase-agar using a trickle-bed bioreactor
title_full_unstemmed Biodegradation of vegetable residues by polygalacturonase-agar using a trickle-bed bioreactor
title_sort Biodegradation of vegetable residues by polygalacturonase-agar using a trickle-bed bioreactor
dc.creator.none.fl_str_mv Ramírez Tapias, Yuly Andrea
Rivero, Cintia Wanda
Giraldo Estrada, Catalina
Britos, Claudia Noelia
Trelles, Jorge Abel
author Ramírez Tapias, Yuly Andrea
author_facet Ramírez Tapias, Yuly Andrea
Rivero, Cintia Wanda
Giraldo Estrada, Catalina
Britos, Claudia Noelia
Trelles, Jorge Abel
author_role author
author2 Rivero, Cintia Wanda
Giraldo Estrada, Catalina
Britos, Claudia Noelia
Trelles, Jorge Abel
author2_role author
author
author
author
dc.subject.none.fl_str_mv ENZYME IMMOBILIZATION
PACKED BED BIOREACTOR
PEAR AND CUCUMBER RESIDUES
SACCHARIFICATION
SCALE-UP
STREPTOMYCES HALSTEDII ATCC 10897
topic ENZYME IMMOBILIZATION
PACKED BED BIOREACTOR
PEAR AND CUCUMBER RESIDUES
SACCHARIFICATION
SCALE-UP
STREPTOMYCES HALSTEDII ATCC 10897
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.8
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Bacterial pectinases degrade the pectic substances present in plant tissues and particularly, polygalacturonases catalyze the hydrolysis of α-(1,4) glycosidic bonds linking D-galacturonic acid units. In this study, polygalacturonase from Streptomyces halstedii ATCC 10897 was immobilized by the matrix entrapment technique using different thermogels. Bacteriological agar added with magnesium cation produced beads with a more stabilized microstructure for enzyme retention, monitored by oscillatory measurements of storage and loss modulus. Agar concentration and protein content were optimized to maximize protein entrapment, product conversion, and reaction yield. Results showed that the mixture at 10:90% (v/v) of protein (2 mg/mL) and agar (4% w/v) was the best immobilization condition to retain 91% of protein and hydrolyze 38% of pectin to allow the highest reaction yield (9.279 g/g) and increase stability up to 48 h of successive reactions. Agarose bead biocatalysts were used in a trickle-bed column operated with recirculation, and this bioreactor allowed the degradation of pear and cucumber residues by enzymatic liquefaction to enhance sugar content up to 15.33 and 9.35 mg/mL, respectively, and decrease viscosity by 92.3%. The scale-up of this process adds value to vegetable residues such as fructooligosaccharides or fermentable sugars, which become a sustainable source of fuels and chemicals.
Fil: Ramírez Tapias, Yuly Andrea. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Investigación en Biotecnología Sustentable; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rivero, Cintia Wanda. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Investigación en Biotecnología Sustentable; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Giraldo Estrada, Catalina. Universidad Eafit; Colombia
Fil: Britos, Claudia Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Investigación en Biotecnología Sustentable; Argentina
Fil: Trelles, Jorge Abel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Investigación en Biotecnología Sustentable; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Bacterial pectinases degrade the pectic substances present in plant tissues and particularly, polygalacturonases catalyze the hydrolysis of α-(1,4) glycosidic bonds linking D-galacturonic acid units. In this study, polygalacturonase from Streptomyces halstedii ATCC 10897 was immobilized by the matrix entrapment technique using different thermogels. Bacteriological agar added with magnesium cation produced beads with a more stabilized microstructure for enzyme retention, monitored by oscillatory measurements of storage and loss modulus. Agar concentration and protein content were optimized to maximize protein entrapment, product conversion, and reaction yield. Results showed that the mixture at 10:90% (v/v) of protein (2 mg/mL) and agar (4% w/v) was the best immobilization condition to retain 91% of protein and hydrolyze 38% of pectin to allow the highest reaction yield (9.279 g/g) and increase stability up to 48 h of successive reactions. Agarose bead biocatalysts were used in a trickle-bed column operated with recirculation, and this bioreactor allowed the degradation of pear and cucumber residues by enzymatic liquefaction to enhance sugar content up to 15.33 and 9.35 mg/mL, respectively, and decrease viscosity by 92.3%. The scale-up of this process adds value to vegetable residues such as fructooligosaccharides or fermentable sugars, which become a sustainable source of fuels and chemicals.
publishDate 2018
dc.date.none.fl_str_mv 2018-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/98852
Ramírez Tapias, Yuly Andrea; Rivero, Cintia Wanda; Giraldo Estrada, Catalina; Britos, Claudia Noelia; Trelles, Jorge Abel; Biodegradation of vegetable residues by polygalacturonase-agar using a trickle-bed bioreactor; Institution of Chemical Engineers; Food and Bioproducts Processing; 111; 9-2018; 54-61
0960-3085
CONICET Digital
CONICET
url http://hdl.handle.net/11336/98852
identifier_str_mv Ramírez Tapias, Yuly Andrea; Rivero, Cintia Wanda; Giraldo Estrada, Catalina; Britos, Claudia Noelia; Trelles, Jorge Abel; Biodegradation of vegetable residues by polygalacturonase-agar using a trickle-bed bioreactor; Institution of Chemical Engineers; Food and Bioproducts Processing; 111; 9-2018; 54-61
0960-3085
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.fbp.2018.06.006
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0960308518304243
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Institution of Chemical Engineers
publisher.none.fl_str_mv Institution of Chemical Engineers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613166395293696
score 13.070432