Matrix-valued orthogonal polynomials related to the quantum analogue of (SU (2) × SU (2) , diag)
- Autores
- N. Aldenhoven; Koelink, Hendrik Tjerk; Román, Pablo Manuel
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Matrix-valued spherical functions related to the quantum symmetric pair for the quantum analogue of (SU (2) × SU (2) , diag) are introduced and studied in detail. The quantum symmetric pair is given in terms of a quantised universal enveloping algebra with a coideal subalgebra. The matrix-valued spherical functions give rise to matrix-valued orthogonal polynomials, which are matrix-valued analogues of a subfamily of Askey–Wilson polynomials. For these matrix-valued orthogonal polynomials, a number of properties are derived using this quantum group interpretation: the orthogonality relations from the Schur orthogonality relations, the three-term recurrence relation and the structure of the weight matrix in terms of Chebyshev polynomials from tensor product decompositions, and the matrix-valued Askey–Wilson type q-difference operators from the action of the Casimir elements. A more analytic study of the weight gives an explicit LDU-decomposition in terms of continuous q-ultraspherical polynomials. The LDU-decomposition gives the possibility to find explicit expressions of the matrix entries of the matrix-valued orthogonal polynomials in terms of continuous q-ultraspherical polynomials and q-Racah polynomials.
Fil: N. Aldenhoven. Radboud Universiteit Nijmegen; Países Bajos
Fil: Koelink, Hendrik Tjerk. Radboud Universiteit Nijmegen; Países Bajos
Fil: Román, Pablo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina - Materia
-
Continuous Q-Ultraspherical Polynomials
Matrix-Valued Orthogonal Polynomials
Q-Racah Polynomials
Quantum Groups
Quantum Symmetric Pairs
Spherical Functions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/62509
Ver los metadatos del registro completo
id |
CONICETDig_36ad1b899df843f1831d3488fd121b07 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/62509 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Matrix-valued orthogonal polynomials related to the quantum analogue of (SU (2) × SU (2) , diag)N. AldenhovenKoelink, Hendrik TjerkRomán, Pablo ManuelContinuous Q-Ultraspherical PolynomialsMatrix-Valued Orthogonal PolynomialsQ-Racah PolynomialsQuantum GroupsQuantum Symmetric PairsSpherical Functionshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Matrix-valued spherical functions related to the quantum symmetric pair for the quantum analogue of (SU (2) × SU (2) , diag) are introduced and studied in detail. The quantum symmetric pair is given in terms of a quantised universal enveloping algebra with a coideal subalgebra. The matrix-valued spherical functions give rise to matrix-valued orthogonal polynomials, which are matrix-valued analogues of a subfamily of Askey–Wilson polynomials. For these matrix-valued orthogonal polynomials, a number of properties are derived using this quantum group interpretation: the orthogonality relations from the Schur orthogonality relations, the three-term recurrence relation and the structure of the weight matrix in terms of Chebyshev polynomials from tensor product decompositions, and the matrix-valued Askey–Wilson type q-difference operators from the action of the Casimir elements. A more analytic study of the weight gives an explicit LDU-decomposition in terms of continuous q-ultraspherical polynomials. The LDU-decomposition gives the possibility to find explicit expressions of the matrix entries of the matrix-valued orthogonal polynomials in terms of continuous q-ultraspherical polynomials and q-Racah polynomials.Fil: N. Aldenhoven. Radboud Universiteit Nijmegen; Países BajosFil: Koelink, Hendrik Tjerk. Radboud Universiteit Nijmegen; Países BajosFil: Román, Pablo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaSpringer2017-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/62509N. Aldenhoven; Koelink, Hendrik Tjerk; Román, Pablo Manuel; Matrix-valued orthogonal polynomials related to the quantum analogue of (SU (2) × SU (2) , diag); Springer; Ramanujan Journal; 43; 2; 6-2017; 243-3111382-4090CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11139-016-9788-yinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11139-016-9788-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:22:12Zoai:ri.conicet.gov.ar:11336/62509instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:22:13.01CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Matrix-valued orthogonal polynomials related to the quantum analogue of (SU (2) × SU (2) , diag) |
title |
Matrix-valued orthogonal polynomials related to the quantum analogue of (SU (2) × SU (2) , diag) |
spellingShingle |
Matrix-valued orthogonal polynomials related to the quantum analogue of (SU (2) × SU (2) , diag) N. Aldenhoven Continuous Q-Ultraspherical Polynomials Matrix-Valued Orthogonal Polynomials Q-Racah Polynomials Quantum Groups Quantum Symmetric Pairs Spherical Functions |
title_short |
Matrix-valued orthogonal polynomials related to the quantum analogue of (SU (2) × SU (2) , diag) |
title_full |
Matrix-valued orthogonal polynomials related to the quantum analogue of (SU (2) × SU (2) , diag) |
title_fullStr |
Matrix-valued orthogonal polynomials related to the quantum analogue of (SU (2) × SU (2) , diag) |
title_full_unstemmed |
Matrix-valued orthogonal polynomials related to the quantum analogue of (SU (2) × SU (2) , diag) |
title_sort |
Matrix-valued orthogonal polynomials related to the quantum analogue of (SU (2) × SU (2) , diag) |
dc.creator.none.fl_str_mv |
N. Aldenhoven Koelink, Hendrik Tjerk Román, Pablo Manuel |
author |
N. Aldenhoven |
author_facet |
N. Aldenhoven Koelink, Hendrik Tjerk Román, Pablo Manuel |
author_role |
author |
author2 |
Koelink, Hendrik Tjerk Román, Pablo Manuel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Continuous Q-Ultraspherical Polynomials Matrix-Valued Orthogonal Polynomials Q-Racah Polynomials Quantum Groups Quantum Symmetric Pairs Spherical Functions |
topic |
Continuous Q-Ultraspherical Polynomials Matrix-Valued Orthogonal Polynomials Q-Racah Polynomials Quantum Groups Quantum Symmetric Pairs Spherical Functions |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Matrix-valued spherical functions related to the quantum symmetric pair for the quantum analogue of (SU (2) × SU (2) , diag) are introduced and studied in detail. The quantum symmetric pair is given in terms of a quantised universal enveloping algebra with a coideal subalgebra. The matrix-valued spherical functions give rise to matrix-valued orthogonal polynomials, which are matrix-valued analogues of a subfamily of Askey–Wilson polynomials. For these matrix-valued orthogonal polynomials, a number of properties are derived using this quantum group interpretation: the orthogonality relations from the Schur orthogonality relations, the three-term recurrence relation and the structure of the weight matrix in terms of Chebyshev polynomials from tensor product decompositions, and the matrix-valued Askey–Wilson type q-difference operators from the action of the Casimir elements. A more analytic study of the weight gives an explicit LDU-decomposition in terms of continuous q-ultraspherical polynomials. The LDU-decomposition gives the possibility to find explicit expressions of the matrix entries of the matrix-valued orthogonal polynomials in terms of continuous q-ultraspherical polynomials and q-Racah polynomials. Fil: N. Aldenhoven. Radboud Universiteit Nijmegen; Países Bajos Fil: Koelink, Hendrik Tjerk. Radboud Universiteit Nijmegen; Países Bajos Fil: Román, Pablo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina |
description |
Matrix-valued spherical functions related to the quantum symmetric pair for the quantum analogue of (SU (2) × SU (2) , diag) are introduced and studied in detail. The quantum symmetric pair is given in terms of a quantised universal enveloping algebra with a coideal subalgebra. The matrix-valued spherical functions give rise to matrix-valued orthogonal polynomials, which are matrix-valued analogues of a subfamily of Askey–Wilson polynomials. For these matrix-valued orthogonal polynomials, a number of properties are derived using this quantum group interpretation: the orthogonality relations from the Schur orthogonality relations, the three-term recurrence relation and the structure of the weight matrix in terms of Chebyshev polynomials from tensor product decompositions, and the matrix-valued Askey–Wilson type q-difference operators from the action of the Casimir elements. A more analytic study of the weight gives an explicit LDU-decomposition in terms of continuous q-ultraspherical polynomials. The LDU-decomposition gives the possibility to find explicit expressions of the matrix entries of the matrix-valued orthogonal polynomials in terms of continuous q-ultraspherical polynomials and q-Racah polynomials. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/62509 N. Aldenhoven; Koelink, Hendrik Tjerk; Román, Pablo Manuel; Matrix-valued orthogonal polynomials related to the quantum analogue of (SU (2) × SU (2) , diag); Springer; Ramanujan Journal; 43; 2; 6-2017; 243-311 1382-4090 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/62509 |
identifier_str_mv |
N. Aldenhoven; Koelink, Hendrik Tjerk; Román, Pablo Manuel; Matrix-valued orthogonal polynomials related to the quantum analogue of (SU (2) × SU (2) , diag); Springer; Ramanujan Journal; 43; 2; 6-2017; 243-311 1382-4090 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11139-016-9788-y info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11139-016-9788-y |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981223221166080 |
score |
12.48226 |