A GPU-Accelerated LPR Algorithm on Broad Vision Survillance Cameras
- Autores
- Dominguez, Leonardo Daniel; D'amato, Juan Pablo; Perez, Alejandro Julian; Rubiales, Aldo Jose
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Video surveillance systems are employed to prevent crime, mounting hundreds of cameras and sensors monitoring activities during the whole day. Due to the huge amount of video information generated in real time, these surveillance centers are requiring more technology and intelligence to support human operators in many complex situations. There are important analyses that could be realized with this video-data: from criminalistics event detection to particular object recognition. One important tool is License Plate Recognition (LPR) that helps detecting vehicles that could have been robbed. Although corporative solutions exist, these techniques require a lot of processing power and special located cameras, that not always could be afford by the local government. In this context, the proposed project is based on applying open-source LPR algorithms that runs on already existent surveillance cameras. These cameras are observing a complete scene (not just a line as it is commonly used), so LPR algorithms are rather slow, processing only 1 image per second. For this reason, the objective is to improve the performance combining a parallel LPR running on graphic processor units (GPU) and object tracking algorithms. This work describes the ongoing implementation, the techniques currently used for object tracking and LPR implementation, and exposes results regarding the efficiency of the solution.
Fil: Dominguez, Leonardo Daniel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina
Fil: D'amato, Juan Pablo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina
Fil: Perez, Alejandro Julian. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina
Fil: Rubiales, Aldo Jose. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina - Materia
-
IMAGE PROCESSING
LICENSE-PLATE RECOGNITION
SURVEILLANCE
DIGITAL GOVERNMENT - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/111828
Ver los metadatos del registro completo
id |
CONICETDig_723c140c3da10776aa268d2a2ec5c02e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/111828 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A GPU-Accelerated LPR Algorithm on Broad Vision Survillance CamerasDominguez, Leonardo DanielD'amato, Juan PabloPerez, Alejandro JulianRubiales, Aldo JoseIMAGE PROCESSINGLICENSE-PLATE RECOGNITIONSURVEILLANCEDIGITAL GOVERNMENThttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Video surveillance systems are employed to prevent crime, mounting hundreds of cameras and sensors monitoring activities during the whole day. Due to the huge amount of video information generated in real time, these surveillance centers are requiring more technology and intelligence to support human operators in many complex situations. There are important analyses that could be realized with this video-data: from criminalistics event detection to particular object recognition. One important tool is License Plate Recognition (LPR) that helps detecting vehicles that could have been robbed. Although corporative solutions exist, these techniques require a lot of processing power and special located cameras, that not always could be afford by the local government. In this context, the proposed project is based on applying open-source LPR algorithms that runs on already existent surveillance cameras. These cameras are observing a complete scene (not just a line as it is commonly used), so LPR algorithms are rather slow, processing only 1 image per second. For this reason, the objective is to improve the performance combining a parallel LPR running on graphic processor units (GPU) and object tracking algorithms. This work describes the ongoing implementation, the techniques currently used for object tracking and LPR implementation, and exposes results regarding the efficiency of the solution.Fil: Dominguez, Leonardo Daniel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; ArgentinaFil: D'amato, Juan Pablo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; ArgentinaFil: Perez, Alejandro Julian. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; ArgentinaFil: Rubiales, Aldo Jose. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; ArgentinaIberian Association for Information Systems and Technologies2018-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/111828Dominguez, Leonardo Daniel; D'amato, Juan Pablo; Perez, Alejandro Julian; Rubiales, Aldo Jose; A GPU-Accelerated LPR Algorithm on Broad Vision Survillance Cameras; Iberian Association for Information Systems and Technologies; European Journal of Sustainable Development Research; 3; 7-2018; 1-72468-4376CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.jisem-journal.com/article/a-gpu-accelerated-lpr-algorithm-on-broad-vision-survillance-camerasinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:13Zoai:ri.conicet.gov.ar:11336/111828instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:13.311CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A GPU-Accelerated LPR Algorithm on Broad Vision Survillance Cameras |
title |
A GPU-Accelerated LPR Algorithm on Broad Vision Survillance Cameras |
spellingShingle |
A GPU-Accelerated LPR Algorithm on Broad Vision Survillance Cameras Dominguez, Leonardo Daniel IMAGE PROCESSING LICENSE-PLATE RECOGNITION SURVEILLANCE DIGITAL GOVERNMENT |
title_short |
A GPU-Accelerated LPR Algorithm on Broad Vision Survillance Cameras |
title_full |
A GPU-Accelerated LPR Algorithm on Broad Vision Survillance Cameras |
title_fullStr |
A GPU-Accelerated LPR Algorithm on Broad Vision Survillance Cameras |
title_full_unstemmed |
A GPU-Accelerated LPR Algorithm on Broad Vision Survillance Cameras |
title_sort |
A GPU-Accelerated LPR Algorithm on Broad Vision Survillance Cameras |
dc.creator.none.fl_str_mv |
Dominguez, Leonardo Daniel D'amato, Juan Pablo Perez, Alejandro Julian Rubiales, Aldo Jose |
author |
Dominguez, Leonardo Daniel |
author_facet |
Dominguez, Leonardo Daniel D'amato, Juan Pablo Perez, Alejandro Julian Rubiales, Aldo Jose |
author_role |
author |
author2 |
D'amato, Juan Pablo Perez, Alejandro Julian Rubiales, Aldo Jose |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
IMAGE PROCESSING LICENSE-PLATE RECOGNITION SURVEILLANCE DIGITAL GOVERNMENT |
topic |
IMAGE PROCESSING LICENSE-PLATE RECOGNITION SURVEILLANCE DIGITAL GOVERNMENT |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Video surveillance systems are employed to prevent crime, mounting hundreds of cameras and sensors monitoring activities during the whole day. Due to the huge amount of video information generated in real time, these surveillance centers are requiring more technology and intelligence to support human operators in many complex situations. There are important analyses that could be realized with this video-data: from criminalistics event detection to particular object recognition. One important tool is License Plate Recognition (LPR) that helps detecting vehicles that could have been robbed. Although corporative solutions exist, these techniques require a lot of processing power and special located cameras, that not always could be afford by the local government. In this context, the proposed project is based on applying open-source LPR algorithms that runs on already existent surveillance cameras. These cameras are observing a complete scene (not just a line as it is commonly used), so LPR algorithms are rather slow, processing only 1 image per second. For this reason, the objective is to improve the performance combining a parallel LPR running on graphic processor units (GPU) and object tracking algorithms. This work describes the ongoing implementation, the techniques currently used for object tracking and LPR implementation, and exposes results regarding the efficiency of the solution. Fil: Dominguez, Leonardo Daniel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina Fil: D'amato, Juan Pablo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina Fil: Perez, Alejandro Julian. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina Fil: Rubiales, Aldo Jose. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina |
description |
Video surveillance systems are employed to prevent crime, mounting hundreds of cameras and sensors monitoring activities during the whole day. Due to the huge amount of video information generated in real time, these surveillance centers are requiring more technology and intelligence to support human operators in many complex situations. There are important analyses that could be realized with this video-data: from criminalistics event detection to particular object recognition. One important tool is License Plate Recognition (LPR) that helps detecting vehicles that could have been robbed. Although corporative solutions exist, these techniques require a lot of processing power and special located cameras, that not always could be afford by the local government. In this context, the proposed project is based on applying open-source LPR algorithms that runs on already existent surveillance cameras. These cameras are observing a complete scene (not just a line as it is commonly used), so LPR algorithms are rather slow, processing only 1 image per second. For this reason, the objective is to improve the performance combining a parallel LPR running on graphic processor units (GPU) and object tracking algorithms. This work describes the ongoing implementation, the techniques currently used for object tracking and LPR implementation, and exposes results regarding the efficiency of the solution. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/111828 Dominguez, Leonardo Daniel; D'amato, Juan Pablo; Perez, Alejandro Julian; Rubiales, Aldo Jose; A GPU-Accelerated LPR Algorithm on Broad Vision Survillance Cameras; Iberian Association for Information Systems and Technologies; European Journal of Sustainable Development Research; 3; 7-2018; 1-7 2468-4376 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/111828 |
identifier_str_mv |
Dominguez, Leonardo Daniel; D'amato, Juan Pablo; Perez, Alejandro Julian; Rubiales, Aldo Jose; A GPU-Accelerated LPR Algorithm on Broad Vision Survillance Cameras; Iberian Association for Information Systems and Technologies; European Journal of Sustainable Development Research; 3; 7-2018; 1-7 2468-4376 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.jisem-journal.com/article/a-gpu-accelerated-lpr-algorithm-on-broad-vision-survillance-cameras |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Iberian Association for Information Systems and Technologies |
publisher.none.fl_str_mv |
Iberian Association for Information Systems and Technologies |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269209310003200 |
score |
13.13397 |