ArviZ a unified library for exploratory analysis of Bayesian models in Python
- Autores
- Kumar, Ravin; Carroll, Colin; Hartikainen, Ari; Martín, Osvaldo Antonio
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- ArviZ is a Python package for exploratory analysis of Bayesian models. ArviZ aims to be a package that integrates seamlessly with established probabilistic programming languages like PyStan, PyMC, Edward, emcee, Pyro and easily integrated with novel or bespoke Bayesian analyses. Where the aim of the probabilistic programming languages is to make it easy to build and solve Bayesian models, the aim of the ArviZ library is to make it easy to process and analyze the results from the Bayesian models.
Fil: Kumar, Ravin. No especifíca;
Fil: Carroll, Colin. No especifíca;
Fil: Hartikainen, Ari. Aalto University; Finlandia
Fil: Martín, Osvaldo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina - Materia
-
BAYESIAN STATISTICS
VISUALIZATION
PYTHON - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/114615
Ver los metadatos del registro completo
id |
CONICETDig_7134e70769cec73fac7f1ba174182391 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/114615 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
ArviZ a unified library for exploratory analysis of Bayesian models in PythonKumar, RavinCarroll, ColinHartikainen, AriMartín, Osvaldo AntonioBAYESIAN STATISTICSVISUALIZATIONPYTHONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1ArviZ is a Python package for exploratory analysis of Bayesian models. ArviZ aims to be a package that integrates seamlessly with established probabilistic programming languages like PyStan, PyMC, Edward, emcee, Pyro and easily integrated with novel or bespoke Bayesian analyses. Where the aim of the probabilistic programming languages is to make it easy to build and solve Bayesian models, the aim of the ArviZ library is to make it easy to process and analyze the results from the Bayesian models.Fil: Kumar, Ravin. No especifíca;Fil: Carroll, Colin. No especifíca;Fil: Hartikainen, Ari. Aalto University; FinlandiaFil: Martín, Osvaldo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaJournal of Open Source Software2019-01-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/114615Kumar, Ravin; Carroll, Colin; Hartikainen, Ari; Martín, Osvaldo Antonio; ArviZ a unified library for exploratory analysis of Bayesian models in Python; Journal of Open Source Software; Journal of Open Source Software; 4; 33; 15-1-2019; 1143-11472475-9066CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://joss.theoj.org/papers/10.21105/joss.01143info:eu-repo/semantics/altIdentifier/doi/10.21105/joss.01143info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:56:42Zoai:ri.conicet.gov.ar:11336/114615instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:56:42.525CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
ArviZ a unified library for exploratory analysis of Bayesian models in Python |
title |
ArviZ a unified library for exploratory analysis of Bayesian models in Python |
spellingShingle |
ArviZ a unified library for exploratory analysis of Bayesian models in Python Kumar, Ravin BAYESIAN STATISTICS VISUALIZATION PYTHON |
title_short |
ArviZ a unified library for exploratory analysis of Bayesian models in Python |
title_full |
ArviZ a unified library for exploratory analysis of Bayesian models in Python |
title_fullStr |
ArviZ a unified library for exploratory analysis of Bayesian models in Python |
title_full_unstemmed |
ArviZ a unified library for exploratory analysis of Bayesian models in Python |
title_sort |
ArviZ a unified library for exploratory analysis of Bayesian models in Python |
dc.creator.none.fl_str_mv |
Kumar, Ravin Carroll, Colin Hartikainen, Ari Martín, Osvaldo Antonio |
author |
Kumar, Ravin |
author_facet |
Kumar, Ravin Carroll, Colin Hartikainen, Ari Martín, Osvaldo Antonio |
author_role |
author |
author2 |
Carroll, Colin Hartikainen, Ari Martín, Osvaldo Antonio |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
BAYESIAN STATISTICS VISUALIZATION PYTHON |
topic |
BAYESIAN STATISTICS VISUALIZATION PYTHON |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
ArviZ is a Python package for exploratory analysis of Bayesian models. ArviZ aims to be a package that integrates seamlessly with established probabilistic programming languages like PyStan, PyMC, Edward, emcee, Pyro and easily integrated with novel or bespoke Bayesian analyses. Where the aim of the probabilistic programming languages is to make it easy to build and solve Bayesian models, the aim of the ArviZ library is to make it easy to process and analyze the results from the Bayesian models. Fil: Kumar, Ravin. No especifíca; Fil: Carroll, Colin. No especifíca; Fil: Hartikainen, Ari. Aalto University; Finlandia Fil: Martín, Osvaldo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina |
description |
ArviZ is a Python package for exploratory analysis of Bayesian models. ArviZ aims to be a package that integrates seamlessly with established probabilistic programming languages like PyStan, PyMC, Edward, emcee, Pyro and easily integrated with novel or bespoke Bayesian analyses. Where the aim of the probabilistic programming languages is to make it easy to build and solve Bayesian models, the aim of the ArviZ library is to make it easy to process and analyze the results from the Bayesian models. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01-15 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/114615 Kumar, Ravin; Carroll, Colin; Hartikainen, Ari; Martín, Osvaldo Antonio; ArviZ a unified library for exploratory analysis of Bayesian models in Python; Journal of Open Source Software; Journal of Open Source Software; 4; 33; 15-1-2019; 1143-1147 2475-9066 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/114615 |
identifier_str_mv |
Kumar, Ravin; Carroll, Colin; Hartikainen, Ari; Martín, Osvaldo Antonio; ArviZ a unified library for exploratory analysis of Bayesian models in Python; Journal of Open Source Software; Journal of Open Source Software; 4; 33; 15-1-2019; 1143-1147 2475-9066 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://joss.theoj.org/papers/10.21105/joss.01143 info:eu-repo/semantics/altIdentifier/doi/10.21105/joss.01143 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Journal of Open Source Software |
publisher.none.fl_str_mv |
Journal of Open Source Software |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613701504598016 |
score |
13.070432 |