Parallel distributed computing using Python

Autores
Dalcin, Lisandro Daniel; Paz, Rodrigo Rafael; Kler, Pablo Alejandro; Cosimo, Alejandro
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This work presents two software components aimed to relieve the costs of accessing high-performance parallel computing resources within a Python programming environment: MPI for Python and PETSc for Python. MPI for Python is a general-purpose Python package that provides bindings for the Message Passing Interface (MPI) standard using any back-end MPI implementation. Its facilities allow parallel Python programs to easily exploit multiple processors using the message passing paradigm. PETSc for Python provides access to the Portable, Extensible Toolkit for Scientific Computation (PETSc) libraries. Its facilities allow sequential and parallel Python applications to exploit state of the art algorithms and data structures readily available in PETSc for the solution of large-scale problems in science and engineering. MPI for Python and PETSc for Python are fully integrated to PETSc-FEM, an MPI and PETSc based parallel, multiphysics, finite elements code developed at CIMEC laboratory. This software infrastructure supports research activities related to simulation of fluid flows with applications ranging from the design of microfluidic devices for biochemical analysis to modeling of large-scale stream/aquifer interactions.
Fil: Dalcin, Lisandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina. Universidad Nacional del Litoral; Argentina
Fil: Paz, Rodrigo Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina. Universidad Nacional del Litoral; Argentina
Fil: Kler, Pablo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina. Universidad Nacional del Litoral; Argentina
Fil: Cosimo, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina. Universidad Nacional del Litoral; Argentina
Materia
Python
Mpi
Petsc
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/13349

id CONICETDig_2ee82b8465d1d07879466151508da4c2
oai_identifier_str oai:ri.conicet.gov.ar:11336/13349
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Parallel distributed computing using PythonDalcin, Lisandro DanielPaz, Rodrigo RafaelKler, Pablo AlejandroCosimo, AlejandroPythonMpiPetschttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2This work presents two software components aimed to relieve the costs of accessing high-performance parallel computing resources within a Python programming environment: MPI for Python and PETSc for Python. MPI for Python is a general-purpose Python package that provides bindings for the Message Passing Interface (MPI) standard using any back-end MPI implementation. Its facilities allow parallel Python programs to easily exploit multiple processors using the message passing paradigm. PETSc for Python provides access to the Portable, Extensible Toolkit for Scientific Computation (PETSc) libraries. Its facilities allow sequential and parallel Python applications to exploit state of the art algorithms and data structures readily available in PETSc for the solution of large-scale problems in science and engineering. MPI for Python and PETSc for Python are fully integrated to PETSc-FEM, an MPI and PETSc based parallel, multiphysics, finite elements code developed at CIMEC laboratory. This software infrastructure supports research activities related to simulation of fluid flows with applications ranging from the design of microfluidic devices for biochemical analysis to modeling of large-scale stream/aquifer interactions.Fil: Dalcin, Lisandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina. Universidad Nacional del Litoral; ArgentinaFil: Paz, Rodrigo Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina. Universidad Nacional del Litoral; ArgentinaFil: Kler, Pablo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina. Universidad Nacional del Litoral; ArgentinaFil: Cosimo, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina. Universidad Nacional del Litoral; ArgentinaElsevier2011-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/13349Dalcin, Lisandro Daniel; Paz, Rodrigo Rafael; Kler, Pablo Alejandro; Cosimo, Alejandro; Parallel distributed computing using Python; Elsevier; Advances In Water Resources; 34; 9; 9-2011; 1124-11390309-1708enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.advwatres.2011.04.013info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0309170811000777info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:12Zoai:ri.conicet.gov.ar:11336/13349instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:12.261CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Parallel distributed computing using Python
title Parallel distributed computing using Python
spellingShingle Parallel distributed computing using Python
Dalcin, Lisandro Daniel
Python
Mpi
Petsc
title_short Parallel distributed computing using Python
title_full Parallel distributed computing using Python
title_fullStr Parallel distributed computing using Python
title_full_unstemmed Parallel distributed computing using Python
title_sort Parallel distributed computing using Python
dc.creator.none.fl_str_mv Dalcin, Lisandro Daniel
Paz, Rodrigo Rafael
Kler, Pablo Alejandro
Cosimo, Alejandro
author Dalcin, Lisandro Daniel
author_facet Dalcin, Lisandro Daniel
Paz, Rodrigo Rafael
Kler, Pablo Alejandro
Cosimo, Alejandro
author_role author
author2 Paz, Rodrigo Rafael
Kler, Pablo Alejandro
Cosimo, Alejandro
author2_role author
author
author
dc.subject.none.fl_str_mv Python
Mpi
Petsc
topic Python
Mpi
Petsc
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv This work presents two software components aimed to relieve the costs of accessing high-performance parallel computing resources within a Python programming environment: MPI for Python and PETSc for Python. MPI for Python is a general-purpose Python package that provides bindings for the Message Passing Interface (MPI) standard using any back-end MPI implementation. Its facilities allow parallel Python programs to easily exploit multiple processors using the message passing paradigm. PETSc for Python provides access to the Portable, Extensible Toolkit for Scientific Computation (PETSc) libraries. Its facilities allow sequential and parallel Python applications to exploit state of the art algorithms and data structures readily available in PETSc for the solution of large-scale problems in science and engineering. MPI for Python and PETSc for Python are fully integrated to PETSc-FEM, an MPI and PETSc based parallel, multiphysics, finite elements code developed at CIMEC laboratory. This software infrastructure supports research activities related to simulation of fluid flows with applications ranging from the design of microfluidic devices for biochemical analysis to modeling of large-scale stream/aquifer interactions.
Fil: Dalcin, Lisandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina. Universidad Nacional del Litoral; Argentina
Fil: Paz, Rodrigo Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina. Universidad Nacional del Litoral; Argentina
Fil: Kler, Pablo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina. Universidad Nacional del Litoral; Argentina
Fil: Cosimo, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina. Universidad Nacional del Litoral; Argentina
description This work presents two software components aimed to relieve the costs of accessing high-performance parallel computing resources within a Python programming environment: MPI for Python and PETSc for Python. MPI for Python is a general-purpose Python package that provides bindings for the Message Passing Interface (MPI) standard using any back-end MPI implementation. Its facilities allow parallel Python programs to easily exploit multiple processors using the message passing paradigm. PETSc for Python provides access to the Portable, Extensible Toolkit for Scientific Computation (PETSc) libraries. Its facilities allow sequential and parallel Python applications to exploit state of the art algorithms and data structures readily available in PETSc for the solution of large-scale problems in science and engineering. MPI for Python and PETSc for Python are fully integrated to PETSc-FEM, an MPI and PETSc based parallel, multiphysics, finite elements code developed at CIMEC laboratory. This software infrastructure supports research activities related to simulation of fluid flows with applications ranging from the design of microfluidic devices for biochemical analysis to modeling of large-scale stream/aquifer interactions.
publishDate 2011
dc.date.none.fl_str_mv 2011-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/13349
Dalcin, Lisandro Daniel; Paz, Rodrigo Rafael; Kler, Pablo Alejandro; Cosimo, Alejandro; Parallel distributed computing using Python; Elsevier; Advances In Water Resources; 34; 9; 9-2011; 1124-1139
0309-1708
url http://hdl.handle.net/11336/13349
identifier_str_mv Dalcin, Lisandro Daniel; Paz, Rodrigo Rafael; Kler, Pablo Alejandro; Cosimo, Alejandro; Parallel distributed computing using Python; Elsevier; Advances In Water Resources; 34; 9; 9-2011; 1124-1139
0309-1708
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.advwatres.2011.04.013
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0309170811000777
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268841270312960
score 13.13397